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S1. Nanofiber engineering stiffness constants 

We use an aggregate representation
1-2

 of the solid nanofiber to estimate the polymer elastic 

properties. The aggregate consists of randomly dispersed, transversely isotropic unit elements 

(that is, rigid chain segments), each with a main axis of symmetry 1 and a plane of isotropy 2-3 

(Figure 4). The unit element is defined by its five independent elastic stiffness constants (that is, 

elastic moduli), 23121221 ,,,, GEE , and the direction of its main axis is determined by the 

segmental orientation O . The unit elements are assumed to be aligned with the 3 axes zyx ,,  of a 

global Cartesian system, where x  is the nanofiber main axis and zy,  are the lateral axes (Figure 

4).  

The compliance matrix of a unit element is denoted by xS , when axis 1 is aligned with 

the x  axis (Figure 4). The compliance matrices of the laterally oriented unit elements are 

obtained by angular transformations of xS , and are denoted by yS  (axis 1 aligns with y ) and zS  

(axis 1 aligns with z ). Given an average segmental orientation O  and the corresponding 

orientation probabilities from equation (20), the compliance matrix of the aggregate, S , is 

obtained by summing up the compliance matrices of all unit elements (assuming iso-stress):  

OPPP zzyyxx MSSSSS  0    (S1) 

 

                                                        
a In this Supporting Information, references to figures or equations in the main text are denoted without the prefix S. 



2 

 

0S  is the compliance matrix of an aggregate with randomly oriented elements ( 0O ): 

 zyx SSSS 
3
1

0    (S2) 

and  

 zyx SSSM  2
3
1    (S3) 

S  is transversely isotropic, as expected from its axial symmetry, and its components are linearly 

dependent on the orientation. The five engineering stiffness constants of the nanofiber, 

yzxyxyyx GEE  ,,,, , can be extracted from S . The extreme theoretical values are obtained for 

1O : 

xextreme SMSS  0  (S4) 

The compliance matrix of a unit element, when its main axis coincides with the x  axis, is 

given by: 
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When the unit element is rotated 90º around the z  axis (Figure 4), so that its main axis coincides 

with the y  axis, the compliance matrix is given by yS , and when the unit element is rotated 90º 

around the y  axis (Figure 4), so that its main axis coincides with the z  axis, the compliance 

matrix is given by zS : 
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Using equation (S1), the resulting aggregate's compliance matrix is:  

S = 
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with the following 5 independent constants: 
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The corresponding stiffness constants, in engineering notation, are: 
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Hence, the elastic moduli, normalized by the isotropic moduli, are given by:  

O

O

S

S

S

S

O

O

S

S

S

S

OS

S

G

G

OS

S

E

E

OS

S

E

E

E

yz

E

xy

G

xy

E

y

E

x



























2
1

22

022

023

23

0

11

011

012

12

0

66

066

0

2
1

22

022

0

11

011

0

1

21

1

1

1

1

1

1

1

1




















 (S10) 

where the parameters are: 
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The three parameters   are positive. The dependent shear modulus in the symmetry plane is 

given by:  
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or just by   2312/  yyz EG . 

These results are depicted in Figure S1, demonstrating that the main effect of nanofiber 

stretching is the sharp increase in the longitudinal modulus, whereas the other elastic constants 

are only mildly affected. Note the decrease in both the lateral tensile modulus and the lateral 
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shear modulus. These trends generally agree with measurements of the elastic constants in cold 

drawn polymers under a varying draw ratio, a parameter that corresponds to segmental 

orientation.
2
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Figure S1: The elastic moduli of the nanofiber aggregate as functions of the molecular 

orientation O . The following assumptions are used: 21 EE  , 212 EG  , 5.02312  , which 

yield 1E , 4.0G   and 1 . 

 

S2. Iso-strain tensile moduli 

The analysis in the main text assumes iso-stress condition. For comparison purpose, we calculate 

here the longitudinal and lateral tensile moduli under iso-strain condition. Instead of summing up 

the compliances of the aggregate's unit elements, as done for iso-stress, we sum up the stiffnesses 

in the x  and y  directions (Figure 4): 
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where the orientation probabilities zyx PPP ,,  are taken from equation (20). We normalize by the 

isotropic modulus 0E :  
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where the isotropic modulus is obtained by substituting 0O  in equation (S13): 
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and E  is an engineering constant slightly smaller than 2: 
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The maximum theoretically achievable longitudinal modulus occurs when 1O  and equals 1E , 

yielding: 
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Similarly, the minimum theoretical lateral modulus is: 
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These predictions provide an unrealistically high value for 0E  and consequently an 

unrealistically low value for the modulus rise  
max0/ EEx , even though 1max

EEx   as in the iso-

stress case (equation (27)). The iso-strain predictions are not in the ballpark of experimental 
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evidence, and are therefore not used. However, we may consider using the iso-stress derived 

modulus rise as an upper bound, and the iso-strain modulus rise as a lower bound. Because the 

experimental results in Figure 7 do not seem to approach high saturation of the longitudinal 

modulus, it is currently impossible to assess whether the upper bound can be approached in 

practice. 

 

S3. Diameter dependence of elongation 

Assuming the maximum strain (that is, elongation) L  scales as the probability xP  that a 

monomer will be aligned with the longitudinal axis, we obtain: 
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where equation (20) was used for the probability. The right term is for diameters smaller than the 

critical diameter, using the approximation   2//1
2

cDDO  . According to this theoretical result, 

the maximum possible elongation ( 1O ) is three times larger than the isotropic elongation 

( 0O ). 

Equation (S19) generally conforms (with a scaling factor) to the experimental data on 

elongation provided by Sui et al3-4, depicted in Figure S2. We see that the elongation rises 

moderately when the fiber diameter decreases, and eventually saturates at a constant value below 

1 (that is, 100% elongation). Similar saturation can be seen also in electrospun PAN nanofibers.
5
 

Note that the experimental data is widely scattered, both in the large and small diameter domains, 

possibly an indication for additional failure mechanisms driven by defects. Such defects can arise 

from free volume regions between polymer chains, or from larger scale pores caused by the rapid 

evaporation typical of electrospinning.  
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Figure S2: Dependence of the maximum elongation on the relative diameter cDD / . The 

experimental data is imported from the study published by Sui et al.
3-4

 The critical diameters used 

to normalized each data set are as in Figure 7. The theoretical solution (solid line) and theoretical 

approximation (dash line) are given by equation (S19), with initial extension 1.00   and a 

scaling factor 0.7.  

 

S4. Effect of reinforcing filler 

The addition of a tubular filler such as carbon nanotubes (CNTs) to the electrospinning polymer 

solution reinforces the nanofibers. Under iso-strain conditions, the elastic tensile modulus of the 

composite nanofiber is given by:
2
 

  xfffl

c

x EvEvE  1  (S20) 

where fE  and xE  are the filler and polymer longitudinal moduli, fv  is the filler volume fraction, 

and l  is a correction factor introduced by shear-lag theory
6
 to account for the finite filler length. 

l  varies between zero and one, and depends on the composite and its components' structural 

features.
7
 The filler is assumed to be aligned with the nanofiber longitudinal axis, as indeed 

observed in experiments.
8
 

 Given the polymer's average segmental orientation O , and normalizing by the polymer 
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isotropic modulus 0E , we get (using equation (S10)): 
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where 0E  and E  are given by equation (S11). This equation, with O  expressed in terms of the 

relative diameter cDD / , is depicted in Figure S3 for several values of fv .  
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Figure S3: Dependence of the composite's relative longitudinal modulus 0/ EEc

x  on the relative 

diameter cDD / , for four values of the filler volume fraction fv , where 0E  is the polymer 

isotropic modulus and cD  is the critical diameter. Based on equation (S21), with 5.0l , initial 

chain extension 1.00  , and 21 200EEE f  , where fE  is the filler longitudinal modulus, and 

1E  and 2E  are the longitudinal and transverse moduli of a polymer chain element. 

 

We can see that before the onset of significant orientation ( 0O  or cDD  ), the filler 

contribution to the composite modulus is dominant ( 0EE f  ), even at relatively low volume 

fractions. However, upon significant orientation ( 0O  or cDD  ), the polymer consists 

mostly of longitudinally aligned chain segments, each with a modulus comparable
9-10

 to that of 
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the filler (CNT modulus is ~1 TPa)
11-12

. In other words, 1EE f   because both filler and polymer 

chains consist of straight, covalent-bonded carbon backbones. Therefore, at high segmental 

orientation, the filler contribution to the composite modulus is not expected to be significant. A 

similar analysis can be shown for the composite strength as well. 

This description is in general agreement with experiments carried out by Sui et al,
3
 using 

electrospun PMMA nanofibers reinforced by multiwall carbon nanotubes (MWCNTs) at ~1% 

volume fraction, and tested for a range of fiber diameters. These experimental results are 

compared with those of non-reinforced nanofibers4 and presented in Figure S4. Although the 

expected modulus rise for such a low filler concentration is relatively small (~20%), as 

demonstrated in Figure S3, there is indeed a comparable modulus improvement in the tested 

nanofibers with large diameters, as well as a similar improvement in the strength. At the small 

diameters, as predicted above, there is no distinct difference between the moduli or strengths of 

the reinforced and non-reinforced fibers, even though these properties have risen 5-10 folds with 

respect to their isotropic counterparts. The PMMA experimental data also includes toughness, 

showing an improvement by approximately a factor of ~2.5 at small diameters, while almost 

none observable at the large diameters. A possible explanation for this opposite trend (compared 

to the modulus and strength trend) relates to the filler toughening mechanism – the energy 

absorbed during nanofiber fracture by filler pullout from the polymer matrix. For a non-

continuous filler, this energy is known to be proportional to the matrix interfacial strength,
7
 which, 

as shown in equation (42) and Figure 8, rises sharply at small diameters. 
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Figure S4: Nanofibers longitudinal elastic modulus E , strength  , and toughness G  versus 

their diameter D , with and without reinforcement by MWCNTs. The CNTs volume fraction is 

~1%. The data is based on experiments of electrospun PMMA nanofibers (Sui et al).
3-4

 The lines 

are fits to equation (S21). 

 

Another interesting experimental observation is provided by Ji et al,13 using electrospun 

PS nanofibers reinforced by multiwall carbon nanotubes (MWCNTs) at ~2% volume fraction, 

and compared with non-reinforced nanofibers. Although no modulus improvement is seen at 

large diameters, the modulus plot of the reinforced nanofibers is shifted toward larger diameters 

with respect to the non-reinforced polymer case, by a factor of about three. Ji relates this change 

to enhanced molecular orientation due to confinement induced by the CNTs, effectively 'dividing' 

the nanofiber into 2-3 separate regions, each with a fraction of the nanofiber diameter. In terms of 
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the present paper, we can say that the onset of high orientation in the reinforced case occurred at 

a larger critical diameter, possibly as a result of reduced jet strain rate caused by the addition of 

CNTs (see equation (33)). 

 

S5. Dependence on electrospinning process parameters 

The relative strain rate css / , and consequently the tensile modulus, can be expressed in terms of 

the electrospinning process parameters. Theoretical derivation based on jet rheology yields (in 

CGS electrostatic units):
14-17
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652131

0

31
E vDs em     (S22) 

where 1m  is the permeability of the medium (air), 0D  is the injection diameter, e  is the 

solution electric conductivity,   is the solution viscosity, 0v  is the jet initial velocity, and E  is 

the electric field intensity (not to be confused with the modulus E ). The solution viscosity can be 

expressed by sps  , where s  is the solvent viscosity,    13/32

1

3 /   esp NN  is the solution 

specific viscosity for a good (athermal) solvent and   3/142

1

3 /  esp NN  for a θ-solvent, and 

s  .
18

 N  is the degree of polymerization,   is the polymer volume concentration in the 

solution, and 1eN  is the number of Kuhn monomers in an entanglement strand in a polymer melt. 

Substituting into equation (S22): 
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Using the critical strain rate 13  cs  from equation (14) and the chain relaxation time 

   13/12

0

  N  from equation (6):  



14 

 

 

















solvent-

solvent good

3

E

3
926

132

32

2131

0

352135

1

6131

0

313

θ
NTvk

NDbs

s

s

B

eesm

c


 



 (S24) 

where )/(3

0 Tkb Bs   is the relaxation time of a single monomer,
18

 b  is the monomer length, 

Bk  is Boltzmann constant, and T  is the temperature. Constants of order unity were omitted. The 

exponents of   are close, -2.73 for a good (athermal) solvent and -2.89 for a θ-solvent, meaning 

that the dependence of the relative strain rate on the solvent condition should be moderate within 

the domain theta-good-athermal.  

 Equation (S24) allows us to characterize the process tradeoffs that may be needed for 

achieving improved mechanical properties. Using the crossover condition css  , and focusing on 

the concentration, electric field, degree of polymerization, and solvent condition, we obtain the 

condition for improved properties:  

 

 











solvent-EE

solvent goodEE

173.0577.0

0

183.0610.0

0

θN

N

/

/
    (S25) 

where the electric field E  is normalized by the scaling factor 0E , which contains the rest of the 

parameters in Equation (S24): 
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B

eesm 
   (S26) 

This condition is depicted in Figure S5. For example, given the polymer molar mass and the 

solution concentration, we need to select a sufficiently high electric field intensity so that the 

corresponding line is above the N  point. If the polymer molar mass is increased, the solution 

concentration should be decreased and/or the electric field increased. Of-course, the selection of 

parameters is subject to electrospinnability bounds,
16

 to ensure formation of a continuous jet. 
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Figure S5: Mapping of the crossover condition for improved mechanical properties (equation 

(S25)). The improved properties are obtained below the relevant line. To convert N  to molar 

mass wM  multiply by the mass of a single Kuhn monomer, 0m  (typically of order 10
2
). 

 

S6. Effects of solvent evaporation and network deformation 

The combination of strong jet extension and rapid solvent evaporation, characteristic of the 

electrospinning process, is the key to the improved mechanical properties of nanofibers. When 

the jet strain rate is sufficiently high ( css  ), stretching induces a steady high molecular 

orientation. At the same time, partial solidification by evaporation freezes this non-equilibrium 

molecular conformation, which otherwise would relax back to an equilibrium randomly oriented 

conformation. Although some chain relaxation may occur in the partially or fully solidified 

nanofiber after the jet reaches the collector and the stress is relieved, it is limited by 

intermolecular interactions, and therefore the high orientation essentially remains.  

As shown by our model, chains reach a steady state extension within a time constant 

inversely proportional to the jet strain rate (equation (7) and Figure 2), in the order of 10
-5

-10
-3

 s, 

close to the jet start. In that region, the effect of evaporation is still negligible, and therefore the 

volume conservation assumption is valid. The onset of significant evaporation at the later stage of 
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the process decreases the mobility of chains, but the high degree of extension and hence 

molecular orientation is already there, and the consequential effect of further evaporation is to 

solidify that conformation. 

That said, evaporation gradually increases the polymer volume fraction in the 

electrospinning solution, and may consequently affect the model. In high stretching, strand 

extension depends predominantly on a single parameter, s , and negligibly on 0  (equation (13) 

and Figure 3). The model's scaling concept, that is the  scaling dependence of the orientation, 

modulus and diameter on s  (or equivalently, on css / ), is not affected. However, the values of  

the two components, s  and  , could be affected by the change in polymer concentration  . 

The strain rate scales as 3.3s  (equation (S23), good solvent), and therefore the 

gradual rise in the concentration along the jet could possibly decrease the strain rate, and 

consequently reduce the stabilized chain extension to a lower degree (equation (13) and Figure 3). 

However, such a moderating effect on the strain rate was not observed, and theoretical and 

experimental evidence show that the strain rate remains high and even increases significantly 

when the jet enters the bending (whipping) instability stage.19-21 These models show that, 

although the downward velocity stabilizes, the jet curvilinear draw ratio keeps growing with the 

increasing whipping diameter.  

The model by Yarin et al
20

 also incorporates evaporation and solidification effects, 

including mass transfer due to evaporation, vapor diffusion in air, gravity, and solution viscosity 

changes, and shows that a new higher and fairly constant strain rate sets in upon the onset of 

instability. For example, in smaller diameter jets, evaporation is more rapid due to the larger 

surface to volume ratio, but at the same time the draw ratio is higher because of a larger whipping 

amplitude.
22

 Based on these observations, we find that a high strain rate at the initial stage of the 

jet would essentially remain throughout the jet and even increase, and therefore the stretch model 

should be valid throughout the jet path. In that respect, equation (S23) should be regarded as the 

stain rate's scaling relationship with the electrospinning parameters, and the polymer volume 

fraction parameter could be justifiably regarded as the solution's initial concentration rather than 
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a varying concentration. 

 The relaxation time scales as 54.0  (equation (6), good solvent), and therefore the 

gradual rise in the concentration could moderately increase the relaxation time, and consequently 

increase the stabilized chain extension (equation (13) and Figure 3). However, the rising 

concentration should not have a significant effect, because the relaxation time quickly tends to 

the steady value of the Rouse relaxation time: 

2

0NR      (S27) 

Moreover, although both the relative diameter (equation (34)) and relative modulus 

(equation (29)) are sensitive to changes in polymer volume fraction and strain rate, their scaling 

relationship   2

0 //


 cx DDEE  is independent of the concentration and strain rate (equation 

(35)). The agreement of this relationship with wide and diverse experimental data (Figure 7) 

provides further substantiation to the scaling approach of the model.  

The strong network deformation and the rapid solvent evaporation also result in structural 

nonuniformity in the radial direction of the jet or nanofiber. In addition to the longitudinal strain 

rate s , the jet exhibits a corresponding radial strain rate 2/s .
23

 Using equation (7) and (11) in 

the radial direction, for a tube whose average orientation coincides with the jet axis: 

)()(
2

0 ff
s

rr     (S28) 

where r  is the relative extension in the radial direction. Because this deformation causes 

compression and results in small values of r , we can substitute  3)( f  and get the radial 

extension: 










ss
r

00 6

6/1



    due to hydrodynamic compression (S29) 

where the right term is for high extensions. At the same time, an entanglement strand's high 
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longitudinal extension is accompanied by its radial compacting due to redistribution of the 

monomers orientational probabilities. This radial extension component can be derived from 

equations (16)-(18), yielding 2

0 13  r  for high extensions and small 0 . Substituting   

from equation (13) we get: 






s
r

023
    due to longitudinal extension (S30) 

The ratio between the extension caused by the longitudinal stretching and the extension 

caused by the radial hydrodynamic compression scales as s , leading to the conclusion that at 

high extensions the radial hydrodynamic effect becomes negligible, whereas the radial effect 

associated with the longitudinal extension is dominant. As a result, the stretched polymer network 

tends to be narrower than the jet diameter, or, in terms of mass transport, the polymer moves 

inward toward the jet center, leaving the solution closer to the boundary more solvent rich and 

less entangled. This result was demonstrated theoretically
24-26

 and confirmed experimentally15, 27-28: 

X-ray imaging of electrospinning jets exhibited higher polymer concentration in the jet central 

region; near-field optical imaging of MEH-PPV nanofibers exhibited higher longitudinal 

molecular orientation in the nanofiber central region; and AFM elastic modulus measurements in 

nanofibers' cross sections exhibited a higher stiffness in the center. 

This analysis demonstrates that the high strain rate leading to the stretch transition and 

modulus rise is effective throughout the jet, even in the presence of rapid evaporation. The 

variations in strain rate during the process, particularly a rise when bending instability sets in, 

have no effect on the scaling properties of the model. Similarly, changes in the confining tube 

characteristics due to large network deformation
29-30

 may affect the macro properties of the flow, 

but should not have an effect on the model's scaling properties. The radial hydrodynamic effects 

are negligible with respect to the dominant radial compacting caused by the high longitudinal 

extension, which, as shown by the model, occurs at an early stage of the jet, prior to the onset of 

significant evaporation. Consequently, mass transport due to evaporation should not impact the 
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already compact network. Finally, the validity of the model is also backed by its good agreement 

with the modulus and strength experimental data. 
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