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ABSTRACT: The simultaneous sharp rise in stiffness,
strength, and toughness of electrospun nanofibers at small
diameters is explained here as the result of the molecular
orientation induced by the strong stretching of the electro-
spinning extensional flow. Differing from the common view
that this phenomenon is related to the nanofibers size scale, we
show by theoretical analysis that it is likely the result of an
abrupt transition in polymer chain extension that occurs at
high flow strain rates. Consequently, the molecular orientation
and mechanical properties experience a matching transition,
followed by a linear rise with the strain rate. The model
compares well with published experimental data, supporting the assertion that the observed phenomena can be explained as the
consequence of electrospinning conditions instead of size dependence. We show how the mechanical properties can be tuned by
controlling the process as well as set the goal for future improvement in these properties.

■ INTRODUCTION

Electrospun polymeric nanofibers exhibit so-called size-depend-
ent properties, such as a significant increase in their stiffness
(tensile modulus), strength, and toughness below a certain
critical diameter.1−12 It was shown that the critical diameter
varies across a wide range of values, from ∼100 nm to ∼10
μm,1−10,12 and depends on the polymer molar mass.2 The
relationship between size and modulus was observed also in
materials other than polymers,13−15 suggesting a universal
phenomenon; however, the mechanism is not necessarily the
same.
A common view is that this change in mechanical properties

is related to size scale through boundary and confinement
effects. Boundary effects include surface tension13−17 (found to
be negligible in nanofibers)7 as well as molecular orientation
induced by the boundary.2 A core−shell morphology was also
suggested, where the nanofiber shell is dense and stiff as a result
of rapid solvent evaporation, increasingly dominating the
properties as its volume fraction increases with decreasing
diameter.9,12 Other heterogeneous structures showed an
opposite trend with a dense and stiff core having high
molecular alignment.18−20 The degree of crystallinity in
semicrystalline polymers was also shown to depend on
diameter, where in some cases it increased at small diameters1

while in others it decreased.10 Confinement effects assume
ordered supramolecular structures, whose size is of the same
scale as the nanofiber diameter, and therefore their rotation
under stress is hindered by the boundary.1,21,22 However, the
existence of such supramolecular structure lacks direct
experimental support11 and does not explain the modulus rise
when the critical diameter is several micrometers.2,5,11,12

The mechanisms described above imply a direct influence of
the nanoscale diameter on the rise of the mechanical properties,
either by locally enhancing molecular orientation and degree of
crystallinity or by confining ordered supramolecular sub-
structures. However, these mechanisms do not account for
the effects of the extremely strong extensional flow on the
polymer network structure prior to solidification, particularly
the partial retraction of polymer chains from the network and
the segmental orientation of these chains.19,23 Molecular
orientation was shown to increase with decreasing fiber
diameter and to positively correlate with the elastic
modulus,6,12 as observed and modeled by Pai et al. using an
aggregate model.6 The orientation was shown to positively
correlate also with the degree of disentanglement.12 In addition
to modeling these dependencies, there is a need for a
theoretical model that relates electrospinning conditions to
molecular orientation and shows its consequence on the
mechanical properties of nanofibers.
Hence, in the current study we seek to explain the stiffness,

strength, and toughness rise by means of the molecular
orientation induced by the extensional flow of electrospinning.
We show by theoretical modeling that chain extension
undergoes an abrupt transition at high strain rates and that
this transition is the likely cause for the sharp rise in molecular
orientation and modulus. In that context, we say that the term
size dependence is somewhat misleading, as it implies a direct
effect of the diameter on the modulus. Rather, the diameter and
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modulus are shown to be separately dependent on the flow’s
strain rate and are therefore related by association and not by
cause. The same approach is extended to strength and
toughness. The mechanical properties are modeled using an
aggregate representation of the nanofiber, and the theoretical
results are compared with experimental evidence imported
from published studies. The reinforcement of nanofibers with
nanofillers such as carbon nanotubes (CNTs) is also briefly
discussed.

■ CHAIN ELONGATION DURING EXTENSIONAL
FLOW

The strong extensional flow of a polymer solution, such as the
flow of an electrospinning jet (Figure 1a), requires that the

solution be semidilute entangled, in order to ensure the
strength and continuity of the jet and the eventual creation of
nanofibers.23 The polymer structure in such solutions is a
network of entangled polymer chains immersed in solvent,
which, when subjected to an extensional flow, is stretched by
the hydrodynamic forces.24 In turn, chains gradually retract
(untangle) from the polymer network by a dynamic process
involving stretching, reptation, and relaxation.25−29 The
entanglement loss rate is faster when the flow’s strain rate is

high, the chains are short, and the polymer concentration is
low.
The degree of chain extension, and consequently its

molecular orientation, are the result of the competing dynamics
of stretching and partial retraction. Entanglements, topological
constraints that prevent intercrossing of chains, effectively
divide each polymer chain into strands, which are elastically
stretched under the applied extensional forces. At equilibrium,
when the solution is at rest, chains can reptate within a
confining tube (Figure 1b), defined by the constraining
potential of nearby chains, allowing monomers to fluctuate
within its diameter.30−32 Under strain, chains can relieve some
of the high elastic tension by sliding along the tube and partial
retraction, thereby achieving a new state of equilibrium.25−29

The rheology of entangled polymer solutions subjected to
extensional flow has been widely investigated,33−37 using
constitutive models based on the confining tube and chain
reptation concepts.30,31 Here, we present a mechanical model
of a single entangled chain immersed in the extensional flow of
an electrospinning jet and use this model to derive the
evolution of chain extension and molecular orientation and the
ensuing nanofiber diameter and mechanical properties.
Consider the typical entangled polymer chain, whose left half

is shown in Figure 1c, subjected to the elongational flow of a
vertically aligned electrospinning jet. The primitive path length
of the chain half (the dotted zigzag line) is L. The chain
consists of strands extending between entanglement nodes
(represented by the gray circles). The end-to-end length of a
strand i is approximately li, the vertical distance between nodes i
and i − 1. Given the jet vertical velocity v and velocity gradient
∇v (that is, strain rate), both functions of the vertical distance x
from the jet start, a node i moves at velocity vi = Xi∇v with
respect to the chain center, where X is a local vertical axis
attached to the chain center (point 0 in Figure 1c). Nodes
located above the chain center move upward with respect to it
(Xi < 0), while those below the center move downward (Xi >
0).
In this we assume that the entanglement nodes are moving at

the same velocity as the jet, with negligible local velocity lag or
lead, in other words an affine deformation of the polymer
network.23,24 We also assume that ∇v is practically constant
within the small size scale of a single chain. As a result, lower
nodes are moving downward faster than higher ones,
continually increasing their vertical separation, dragging the
two chain halves extending from the chain center and causing
the chain to simultaneously elongate and slide within its
confining tube.
By analogy to a rope in a system of pulleys, the end-to-end

elongation of each strand contributes a velocity magnitude li∇v
to the dragging velocity of the chain along its primitive path.
The cumulative contribution of preceding strands to the
velocity of a strand li is of magnitude ∑j=1

i−1lj∇v = Li−1∇v, where
Li−1 is the distance from node 0 to node i − 1 along the
primitive path. Node i − 1 drags the strand li downward at
velocity Xi−1∇v, and therefore the overall downward velocity of
the strand is vp ≅ (Xi−1 + Li−1)∇v with respect to the chain
center. At a point P, located a distance lp below node i (Figure
1c), the solvent flows downward at velocity vs ≅ Xp∇v = (Xi +
lp)∇v with respect to the chain center. Thus, the chain
downward velocity with respect to the solvent is given by

Figure 1. Illustration of chain dynamics in extensional flow and
definition of parameters. (a) Electrospinning under electrostatic field
intensity E (not to be confused with the modulus E). (b) Polymer
network extension and partial retraction, showing the jet boundary
(turquoise) and a typical confining tube a (orange). (c) The left half of
a typical chain (red) and its primitive path L (dotted line). The gray
circles represent entanglement nodes, numbered sequentially 0, 1, 2, ...,
i starting from the chain center 0. The thick arrows indicate the
polymer and solvent velocity vectors with respect to the chain center,
vp and vs, respectively, at points P and P′.
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where Lp is the distance from node 0 to point P along the
primitive path. Similarly, at a point P′ (Figure 1c), vp ≅ (Xi−1 −
Li−1)∇v and vs ≅ (Xi − lp)∇v, yielding an upward velocity of vp
− vs ≅ − Lp∇v. Hence, a chain section at an arbitrary point P
experiences a solvent velocity of magnitude Lp∇v in the
pathwise direction toward its free end and a corresponding
proportional hydrodynamic force. More generally, when the
chain is rotated with respect to x, the chain pathwise velocity
should be adjusted by an orientation term, for example, Lp∇v
cos θ (or just Lp∇v if the orientation term is implicitly included
in ∇v), where θ is the flow-dependent rotation angle.
The solvent velocity with respect to chain sections grows

linearly from 0 at the chain center up to a maximum of L∇v at
its ends (Lp = L). Consequently, the hydrodynamic force acting
on the chain produces a shear stress that is lower close to its
center and higher toward its ends. The integration of the shear
stress from the free ends toward the center generates tension in
the chain, which builds up from zero at the free ends up to a
maximum at the center, evidenced by a preferred midpoint
chain scission in extensional flow experiments.38−40 As a result,
the degree of chain extension and segmental orientation is not
uniform along the chain but rather decreases with the distance
from the center outward. However, because we are interested in
average scaling properties of the chain (average orientation,
average elastic modulus, etc.), we are justified in using an
average velocity L∇v/2.
The average hydrodynamic force acting on the chain half,

ζL∇v/4 where ζ is the hydrodynamic friction coefficient of the
full chain, gives rise to an average elastic tension F(L) in the
chain. The elasticity of a polymer chain is entropic; in other
words, its entropy decreases and hence its stiffness increases for
less probable chain conformations, and therefore at very large
elongations F(L) rises sharply and deviates strongly from linear
behavior. The chain dynamics can be described by the following
differential equation:

ζ− ∇ − + − ≈⎜ ⎟⎛
⎝

⎞
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L
t

L v
L
t

F L F L
d
d

d
d

4[ ( ) ( )] 0
2

2 0 (2)

where the ≈ symbol denotes a scaling relationship, m is the
chain mass, and F(L0) is the effective elastic force when the
network is at rest, corresponding to a primitive path length L0.
The time derivatives of L denote the average pathwise velocity
and acceleration of the chain half, resulting from its extension
(positive derivatives of L). The hydrodynamic friction
coefficient scales as (see Appendix)

ζ η ϕ≈ ν ν− −bNs
(1 )/(3 1)

(3)

where ηs is the solvent viscosity, b is the monomer length, N is
the number of monomers in the chain (that is, the degree of
polymerization), ϕ is the polymer volume fraction (that is,
volume concentration), and ν is Flory’s exponent (1/2 for a θ-
solvent and approximately 0.588 for a good solvent32). The
term monomer is used here in the sense of a Kuhn monomer,
that is, a chain section that can be considered rigid, typically
containing several chemical monomers.
Because our main interest is in the average segmental

orientation of the chain, we substitute the chain primitive path

semilength L by the average relative extension of the chain ε,
defined as

ε ≡ =L
L

L
bN
2

max (4)

Substituting ε and ζ into eq 2 and rearranging:
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where τm = m/ζ ≈ m0/(ηsbϕ
(1−ν)/(3ν−1)) is a characteristic time

due to the chain mass (m0 is the mass of a single Kuhn
monomer) and

τ τ ϕ≈ ν ν− −N0
2 (1 )/(3 1)

(6)

is the relaxation time of an extended chain, where τ0 ≈ ηsb
3/

(kBT) is the relaxation time of a single monomer,32 kB is
Boltzmann constant, and T is the temperature. The component
τR ≈ τ0N

2 is the Rouse chain relaxation time. The exponent of
ϕ is 0.54 for a good solvent and 1 for a θ-solvent. Constants of
order unity were omitted. f = Fb/(kBT) is the normalized force,
and ε0 = L0/Lmax is the primitive path initial extension of a
chain in a network at rest (see Appendix).
Because τm ≪ τ (τm ∼ 10−12 s for common polymers and

solutions, and τ ∼ 10−4−10−2 s for typical electrospinning
solutions), the effect of chain acceleration can be neglected,
reducing eq 5 to

ε ε
τ

ε ε≈ ∇ − −
t

v f f
d
d

1
[ ( ) ( )]0 (7)

This stretch equation is equivalent to the uniaxial extensional
flow model of Bhattacharjee et al.,36 as can be seen by
substituting f(ε0) ≅ 3ε0 and switching to the stretch ratio λ =
L/L0 by substituting ε = ε0λ. The flow-dependent tube
orientation term,36 implicitly included in ∇v, reduces the
resultant stretching at low strain rates (nearly random
orientation), while tending to 1 at high strain rates (nearly
uniform orientation). Therefore, when the orientation term is
not explicitly used, eq 7 can be regarded as an upper bound for
chain extension, with a close match at high strain rates.
Switching from the time domain t to the jet velocity domain

v (by substituting dε/dt = (dε/dv)v∇v):

ε ε ε ε
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≈ −
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The initial condition at t = 0 (or v = v0, the initial velocity) is ε
= ε0, given by (see Appendix)

ε
ϕ
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Typical values are ε0 ≅ 0.01−0.3.
The velocity profile of a jet in an extensional flow, specifically

electrically driven fluid jets, can be described (sufficiently far
from the jet exit) by a power law of the form v/v0 ≅ (sx/v0)

2β,
where β ranges from 1/4 to 1 and s is the gradient
constant.41−46 This allows us to express the velocity gradient
in eq 8 in terms of the velocity, ∇v ≈ s(v/v0)

γ, where γ = (2β −
1)/(2β) ranges from −1 (decreasing gradient), through 0
(constant gradient, s), to 1/2 (increasing gradient). The
evolution of ε and f (ε) as functions of the jet relative velocity
v/v0 is depicted in Figure 2, for three types of velocity gradient:
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increasing, constant, and decreasing. For a constant gradient, ε
reaches a stable steady-state value, whereas for an increasing
gradient it is asymptotic to ε = 1, and for an decreasing gradient
it is asymptotic to ε = ε0. Because of the very rapid solvent
evaporation during electrospinning,47−51 increasing and
decreasing gradients may eventually saturate into a constant
gradient, as indeed observed in common electrospinning
processes46,52,53 (see Supporting Information section S6).
The onset of bending (whipping) instability causes the jet to

form a sequence of smoothly curved loops, generating a
considerable jet elongation that can theoretically mount up to
105 s−1.54,55 However, measurements show that this value is
moderated by evaporation and partial solidification to an
average strain rate of 103 s−1. A possible strain rate change
during the transition from the jet’s straight regime to the
whipping regime would indeed have an effect on the relative
chain extension ε. However, this does not affect the validity of
the chain dynamics analysis described above but only changes
the value of the strain rate in the model. See further details in
Supporting Information section S6.
Hence, we focus on the case of a constant velocity gradient,

∇v = s ∼ 103−105 s−1, in which eq 8 has a single parameter sτ,
and can be solved by separation of variables for a given function
of the elastic force f(ε). The dimensionless parameter sτ is of
order 100−102 for common electrospinning conditions. sτ
determines the balance between the hydrodynamic stretching
force and the opposing elastic (entropic) contraction force.
When sτ is high, the hydrodynamic force is dominant and the
extension is strong, whereas when sτ is low the elastic force is
dominant and the extension is weak.

■ STEADY STATE CHAIN EXTENSION
The transient response of ε is exponential, with a characteristic
time constant inversely proportional to the velocity gradient
(eq 7 with f(ε) ≅ f(ε0)), of the order of s−1 ∼ 10−5−10−3 s.
This rise time is very fast, occurring within the first few
millimeters of the jet, prior to a significant onset of
solidification. During that stage, ε rises approximately linearly
with v (eq 8 with f(ε) ≅ f(ε0)):

ε
ε

≈ v
v0 0 (10)

as expected from the affine deformation of the polymer
network.23,24

Because a steady state extension is achieved early on, a time-
dependent solution of eq 8 is not needed for our purpose.
Instead, the steady state extension and tension can be derived
by (eq 7 with dε/dt = 0):

τε ε ε≅ −s f f( ) ( )0 (11)

for a known function of the elastic force f(ε). Estimates can be
obtained using the Langevin nonlinear force function,32 ε =
( f) ≡ coth( f) − 1/f, in its inverse form f = −1(ε), for which

we use the approximation56 f ≅ ε(3 − ε2)/(1 − ε2). Alternative
similar nonlinear force functions can be applied, for example, f
≅ 3ε(1 − ε0)/(1 − ε) (adapted from Bhattacharjee et al.36).
Numerical solution of ε and f(ε) for three values of ε0 is
presented in Figure 3. Explicit solution of eq 11 may be

obtained by solving the resultant cubic equation, but this is too
long and lacks insight. Alternatively, series expansion
approximations can be obtained for small extensions by using
f(ε) ≅ 3ε from the force function

ε
ε

τ
ε τ τ≅

−
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1 /3
1

3
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where the right term is for sτ≪ 3. Similarly, for high extensions
by using f(ε) ≫ f(ε0) in eq 11, yielding

ε τ
τ τ

τ≅ −
−

≅ − >s
s s

s
3
1

1
1

, 3
(13)

where the right term is for sτ ≫ 3. These two approximations
are presented in Figure 3 as well.
If the external tension is removed too early, for example

when the jet reaches the collector in a liquid state, the extended
strands will relax (recoil back to equilibrium conformation)
within a characteristic time τ. However, because the strand
extension ε stabilizes early in the process, and because in
general the jet is largely solidified when it hits the collector, the
extension magnitude is essentially retained in the solid
nanofiber. Further relaxation of stretched chains is minimal
for polymers with a high glass transition temperature Tg. Note
that the recoiling characteristic time τ should not be confused

Figure 2. Chain extension ε and tension force f(ε) based on eq 8, as
functions of the jet relative velocity v/v0, for decreasing, constant and
increasing velocity gradients (strain rates), s(v/v0)

−1, s, and s(v/v0)
0.5,

respectively. ε0 = 0.2, sτ = 4, f(ε) is defined by an inverse Langevin
function (see text), and f 0 = f(ε0).

Figure 3. Steady state chain extension ε and tension force f as
functions of the relative strain rate s/sc, where sc = 3τ−1 is the critical
strain rate and τ is the chain relaxation time. Numerical solution of eq
11, for three initial extensions ε0, including the approximations of eqs
12 and 13 (dash-dotted lines).
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with reptation time, the time for an entangled chain to diffuse
along its primitive contour length.
The stabilized chain extension ε derived from eqs 11 and 12

goes through an abrupt transition at sτ = 3, seen in Figure 3.
We define the critical strain rate as the strain rate at this
transition point:

τ
=s

3
c (14)

and further define the relative strain rate, s/sc = sτ/3. The
relative strain rate depends on the electrospinning process
parameters, as shown in eq 30. At the transition point (sτ = 3),
the critical steady state extension can be approximated by series
expansion of eq 11 at accuracy of O(ε0

2):

ε
ε ε

τ≅ − =⎜ ⎟⎛
⎝

⎞
⎠ s

3
2 2

, 3c
0

1/3
0

(15)

We observe that the chain demonstrates two distinct
equilibrium states with respect to the strain rate s: when s <
sc, the strand is slightly stretched but remains in a conformation
close to a Gaussian coil, whereas when s > sc, the strand goes to
an almost fully stretched state. A phase transition occurs at the
critical gradient, s = sc, with two widely separated extension
states: the coil shape and the stretched shape. This
phenomenon is similar to the known coil stretch transition
observed in a free unentangled chain in an extensional flow
field30,57 and implies the existence of two distinct energy
equilibrium states that correspond to the two extension states.
Coil stretch transition was also observed in entangled polymer
chains under an extensional flow, for example, by Odell et al.58

and Bhattacharjee et al.36 The discussion in the next section will
show how this transition drives a consequent transition in the
elastic modulus of electrospun nanofibers.

■ MOLECULAR ORIENTATION

Given the relative extension of a chain ε, its average segmental
orientation O can be calculated, where a segment is a rigid
section of a chain referred to as a Kuhn segment (or Kuhn
monomer)32 of size b. A flexible linear polymer chain with N
segments can be described by N successive steps of length b on
a 3D Cartesian lattice, where a step represents a single
monomer.30,32,59 Such a chain is illustrated in 2D in Figure 4 by
the gray sequence of segments. The stepping direction is
determined by the effective external potential U at the
monomer position, arising from the initial state of the polymer
network and the hydrodynamic force exerted on it. The
probability that a step (that is a monomer) will be in a given
direction is e−∇Ub/(kBT)/Q, where ∇U is the potential gradient in
that direction, ∇Ub is the potential rise along the step, and Q is
a partition function.59,60

Within the framework of a jet, we define the Cartesian
system x, y, z, so that x is the downward longitudinal axis
(Figures 1a and 4), and y and z are the outward radial axes. We
denote the potential step in the longitudinal direction as ux = u
= ∇Uxb/(kBT). In the radial directions, the potential gradient
induced by the flow is negligible,24,59 and therefore we denote
uy = uz = u0, where u0 is the potential step for a polymer
network at rest. The probability that a monomer will be
oriented in the positive (+) or negative (−) directions of the
longitudinal axis or one of the two radial axes is given by

=
+

= =
+

±
∓

± ±
∓

P
u u

P P
u u

e
2(cosh 2 cosh )

e
2(cosh 2 cosh )

x

u

y z

u

0

0

0

(16)

where Q was determined so that the sum of all probabilities
equals 1.
The chain extension is the sum of the lengths of all

monomers oriented in the positive longitudinal direction,
minus the sum of all monomers oriented in the negative
longitudinal direction, and hence the relative extension is given
by

ε ε= = − = −
+

+ −P P
u

u u
sinh

cosh 2 coshx x x
0 (17)

and the initial relative extension is

ε =
− u

u
sinh

3 cosh0
0

0 (18)

We use the following form for the orientation parameter, O =
(3⟨cos2 θ⟩ − 1)/2, where θ is the angle between the monomer
direction and the positive direction of the x-axis, and ⟨cos2 θ⟩ is
an average over all monomers. The orientation parameter
equals 0 for arbitrarily oriented monomers, 1 for full
longitudinal alignment, and −0.5 for full radial alignment.
Using eq 16, the average segmental orientation of chains in the
jet is given by

θ= + − =
−

+
+ −O P P

u u
u u

3
2

( ) cos
1
2

cosh cosh
cosh 2 coshx x

2 0

0
(19)

Note that cos2 θ is not affected by the direction polarity and
that the lateral components vanish because cos2(π/2) = 0. The
probability that a monomer will be aligned with any of the three
Cartesian axes, expressed in terms of O, can be obtained by
inverting eq 19:

Figure 4. Illustration of a polymer chain (gray) consisting of a
sequence of connected segments b on a Cartesian lattice, residing
within the boundary (turquoise) of a jet or a nanofiber. The global
axes system is denoted by x, y, z. In the solid state, the nanofiber is
represented by an aggregate consisting of dispersed unit elements of
size b, whose local axes system is denoted by 1, 2, 3, where (1)
represents the high stiffness direction (chain backbone bonds) and (2,
3) the low stiffness directions (interchain bonds). An element can be
oriented in the x direction (blue) or in a lateral (radial) y or z direction
(red).
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The extension dependence of O can be extracted from eqs 17,
18, and 19:

ε ε ε ε
ε

=
− − + − + +

+
O

(1 3 ) (1 9 ) 3(1 3 )

1 3
0

2
0

2
0

2 2

0
2

(21)

which, for small values of ε0, can be approximated within
accuracy of O(ε0

2) by

ε ε≅ − + + ≪O 1 1 3 , 12
0 (22)

The orientation of eq 21 is depicted in Figure 5, with ε
expressed in terms of the relative strain rate s/sc (eqs 11 and

14), exhibiting a similar abrupt rise as ε at the critical strain rate.
Note that at zero strain rate, although each of the aggregate’s
unit elements has an initial extension ε0, the resulting
orientation tends to zero because the elements are randomly
oriented (ux = uy = uz = u0).

■ NANOFIBER ELASTIC MODULUS
The extension of chains in the polymer solution reaches a
steady state very fast and is therefore retained during
solidification of the jet and formation of a nanofiber. Even
though some chain relaxation, that is, recoiling, occurs after the
stretching stress is relieved, it is limited due to solidification and
interaction with neighboring chains (see Supporting Informa-
tion section S6). Hence, the degree of chain elongation during
the liquid phase of the jet, expressed by the relative extension ε
or the segmental orientation O, can be used as an estimate for
the conformation of the polymer chains in the solid phase,
namely, the nanofiber. The average segmental orientation

affects the average elastic properties of the solid polymer
because the elastic properties of such a segment are anisotropic.
Here we use an aggregate representation61,62 of the solid to
estimate the polymer elastic properties, predominantly its
stiffness in tension. Aggregate models were used successfully in
predicting the properties of anisotropic amorphous polymers
formed, for example, by cold or hot drawing, as well as in
crystalline polymers.61,62 More recently, Pai et al. used Ward’s
aggregate model to predict the elastic modulus of electrospun
PA 6(3)T nanofibers using measured molecular orientation.6

Consider a typical rigid chain segment (Kuhn monomer),
representing a single unit element in the polymer aggregate,
shown in Figure 4 in a local Cartesian system 1, 2, 3. The
elasticity of the segment is assumed to be transversely isotropic,
with an axis of symmetry 1 and a plane of isotropy 2−3, such
that the element’s stiffness in the axial direction (1) is high,
dominated by the covalent bonds along the chain backbone,
whereas in the lateral (transverse) directions (2, 3) the stiffness
is dominated by the much lower intermolecular forces such as
van der Waals. Such a unit element has five independent elastic
stiffness constants, defined in engineering notation as the elastic
moduli E1, E2, G12, ν12, and ν23. As suggested in the previous
section, the chain segments are assumed to be aligned with the
three axes x, y, z of a global Cartesian system (that is, a lattice),
where x is the nanofiber main axis and y, z are the lateral
(radial) axes. This assumption, namely, that the segments’
alignment is confined to the directions of the system axes, is
justified statistically in view of the very large number of
segments in the aggregate.
Given an average segmental orientation O and the

corresponding orientation probabilities from eq 20, the five
engineering stiffness constants of the nanofiber, Ex, Ey, Gxy, νxy,
and νyz, can be obtained from the unit element properties (see
Supporting Information section S1). We focus here on the axial
and lateral tensile moduli, Ex and Ey, respectively, for which a
plain iso-stress mixing rule can be used:
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(23)

By doing so, we sum up the compliances (that is, E−1) of all the
elements in a row in the x direction (Figure 4) and similarly all
the elements in a row in the y direction. The assumed iso-stress
condition was preferred over iso-strain (Supporting Informa-
tion section S2) as it better predicts the high modulus rise
observed in experiments. Hence, the axial and lateral tensile
moduli, normalized by the isotropic modulus E0, are given by
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2 (24)

where the isotropic modulus is obtained by substituting O = 0
in eq 23:
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Figure 5. Orientation O and relative tensile modulus E/E0 as functions
of the relative strain rate s/sc, where sc = 3τ−1 is the critical strain rate
(τ is the chain relaxation time), and E0, Ex, and Ey are the isotropic,
longitudinal, and transverse tensile moduli, respectively. The
orientation and moduli are given by eqs 21 and 24, respectively.
The tensile moduli of an aggregate’s unit element are related by the
ratio E1/E2 ≫ 1, where E1 and E2 are the longitudinal and transverse
moduli of the element.
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and αE is an engineering constant slightly smaller than 1:

α =
−
+

≅
E E
E E

2 / 2
2 / 1

1E
1 2

1 2 (26)

The maximum theoretically achievable axial tensile modulus
occurs when O = 1 and equals E1, yielding
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Similarly, the minimum theoretical lateral modulus equals E2,
yielding
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The approximations in eqs 25−28 assume that E1 ≫ E2,
justified when considering the relative elastic stiffness of
covalent bonds (∼E1) and intermolecular bonds (∼E2),
which is in the order of E1/E2 ∼ 102−103.63,64 Also, typical
measured ratios for partially oriented drawn and compacted
polymers vary between 10 and 50.62 Hence, the maximum
saturation value is of order Ex/E0 ∼ 102−103, possibly
achievable in pure crystalline structures,65 whereas for
amorphous and semicrystalline polymers it is likely in between
the iso-stress result and the much lower iso-strain result
(Supporting Information section S2).
Equation 24 provides a very simple yet meaningful prediction

for the tensile moduli of a polymer whose structure can be
represented by an aggregate. This minimalistic result,
uncommon in models of structural anisotropy with molecular
orientation,6,62 is made possible owing to the use of the lattice
representation of polymer chains. Similar trends of sharp rise in
the longitudinal modulus and moderate drop in the transversal
modulus were observed experimentally in cold drawn polymers
in relation to the draw ratio, a parameter that corresponds to
segmental orientation.62 Furthermore, it is seen that the moduli
depend predominantly on the molecular orientation set in the
solid nanofiber, regardless of how it was reached and the
polymer type, in agreement with experimental observations62

made on cold drawn polymers. Although the aggregate
modeling has some limitations, in that it generates widely
separated upper and lower bounds for the moduli (because, due
to anisotropy, when assuming uniform stress the strain in the
aggregate is not uniform, and vice versa),62 it still provides a
good prediction for the longitudinal modulus, as shown in the
next section.
The application of this result to electrospun nanofibers is

done by substituting the strain rate dependence of the relative
extension ε (eq 11) into the orientation in eq 21. The resulting
strain rate dependence of the tensile moduli is depicted in
Figure 5. The rise of the longitudinal modulus at high strain
rates is linear with the strain rate, as can be shown by using eqs
13, 14, and 22. Approximating by series expansion at accuracy
O[(s/sc)

−2], we obtain O ≅ 1 − (s/sc)
−1/2, which when

substituted in eq 24 with αE = 1 (E1 ≫ E2) yields

≅ ≫
E
E

s
s

s s2 ,x

0 c
c

(29)

This rise is limited by the maximum theoretically achievable
modulus (eq 27) and by electrospinnability23 bounds.
This modulus−strain rate dependency can be further

expressed in terms of the electrospinning process parameters

such as the electric field intensity, solution concentration, and
solution feed rate. Using the known dependence of s on these
parameters23,45,46 and the critical sc from eq 14, the relative
strain rate scales as (details are provided in the Supporting
Information section S5)
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(30)

It is seen that the relative strain rate, and consequently the
longitudinal modulus, increase upon an increase in the Kuhn
segment length b, the injection diameter D0, solvent viscosity ηs,
solution electric conductivity σe, and electric field intensity E
and upon a decrease in the jet initial velocity v0 (alternatively,
the feed rate), degree of polymerization N (alternatively, the
molar mass), and polymer volume concentration in the solution
ϕ. In general, the modulus will increase when a high stretching
force is applied on a low-viscosity jet fed at low rate. The
exponents of ϕ are close, −2.73 for a good solvent and −2.89
for a θ-solvent, meaning that the solvent dependence of the
relative strain rate, and hence the relative longitudinal modulus,
should be moderate. Equation 30 is powerful because it makes
it possible to relate both the moduli and diameter (next
section) directly to the electrospinning conditions as well as to
determine the process conditions that can yield improvement
of the mechanical properties (Supporting Information section
S5).

■ CRITICAL DIAMETER AND MODULUS RISE
The condensed polymer network diameter scales as D ≈
Djet√ϕ, where ϕ is the polymer volume fraction in the solution
and Djet is the local jet diameter.6,23,66 For a given volume-
conserving flow rate, the jet velocity and diameter are related by
v/v0 ≈ (Djet/D0)

−2, where D0 is the jet initial diameter (that is,
the internal diameter of the injection needle, Figure 1b). Thus,
the condensed polymer diameter D scales as23

ϕ
≈D

D
v
v0

0

(31)

The velocity profile at a constant strain rate is v ≅ sx, and
therefore the velocity upon reaching the collector is sd, where d
is the gap distance between the electrodes (Figure 1a). Hence,
the nanofiber diameter scales as

ϕ
≈D

D
v

sd0

0

(32)

Switching from the velocity domain v to the time domain t by
substituting v = v0e

st, we can get the jet strain, st ≅ 2 ln(√ϕD0/
D(t)), which is the Hencky strain (with the term √ϕ added for
the condensed polymer) defined by McKinley and Sridhar35

and used by Pai et al.6 to determine the nanofiber drawing ratio.
We define the critical diameter Dc (or crossover diameter) as

the nanofiber diameter obtained for a jet having a strain rate
equal to the critical strain rate, s = sc = 3τ−1 (eq 14):

ϕ ϕ τ
ϕ

τ
≈ ≈ ≈ ν ν−D

D
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d
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v

d3 3
c

0

0

c

0 /(3 1) 0 0

(33)

The right term was obtained by substituting the expression for
τ from eq 6. The exponent of ϕ is 0.77 for a good solvent and 1
for a θ-solvent. The critical diameter signifies the transition in
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the molecular orientation and elastic moduli. The higher the Dc,
the higher the nanofiber diameter where the tensile modulus
starts to rise, and vice versa. The dependence of Dc on the
degree of polymerization, solution concentration, solvent
condition, initial velocity, electrodes gap, and solvent viscosity
makes it controllable over a wide nanoscale and microscale
range. In fact, except for the electric field intensity and the
solution’s electric conductance, all the free parameters of the
electrospinning process are present in eq 33 (see eq 30).
However, electrospinnability sets lower and upper bounds, for
example, a high value of the quantity Nϕν/(3ν−1) can result in
excessively high solution viscosity that precludes jet formation,
whereas a low value can result in complete disentanglement of
the network and jet separation.23 For that reason, the selection
of N and ϕ values is typically balanced for a successful
electrospinning process.
Combining eqs 32 and 33, we get

≈
−⎛

⎝⎜
⎞
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D
D

s
sc c

1/2

(34)

where s/sc can also be expressed in terms of the electrospinning
process parameters (eq 30). We see that for s < sc, a small
increase in strain rate results in a sharp drop in diameter. This
relationship enables us to depict the orientation and tensile
moduli as functions of the relative diameter (Figure 6), by

replacing the variable sτ in eq 11 by D/Dc (with the help of eq
14). The ratio E1/E2 sets the saturation value of the modulus
(D/Dc → 0) at Ex/E0 ≅ (2/3)E1/E2 (eq 27). The lateral
modulus decreases to the saturation value of Ey/E0 ≅ 2/3. The
curves of O and Ex have opposite convexities at the region D <
Dc, so that upon decreasing diameter, when O starts to rise
sharply Ex rises moderately, then both rise sharply, and finally
the trend reverses. This may possibly clarify why some
experimental observations exhibit low correlation between
modulus rise and orientation rise,1 while other observations
show higher correlation.6,11,12

Using eqs 13 and 22, and approximating by series expansion
at accuracy O[(D/Dc)

4], we obtain O ≅ 1 − (D/Dc)
2/2, which

when substituted in eq 24 yields a simple estimate for the
longitudinal tensile modulus at diameters smaller than the
critical diameter:
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where the right term is for αE = 1 (E1 ≫ E2). This result is
depicted in Figure 6 as the approximate solution. Similarly for
diameters larger than the critical diameter, using eq 12 O ≅
3ε0

2(D/Dc)
−2 at accuracy O[(D/Dc)

−4], and the longitudinal
tensile modulus approximation is
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At the transition point, with the help of eqs 15 and 21, the
critical longitudinal tensile modulus is approximated by
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where the right term is for αE = 1. Note that this value, typically
below 2, only marks the beginning of the modulus climb,
whereas the sharp rise is seen to occur at D/Dc below 0.5 and
even lower (Figure 6).
Equation 35 demonstrates that when D < Dc, the

dependence of the longitudinal modulus on the relative
diameter is practically invariant with respect to the electro-
spinning conditions, such as the electric field, feed rate, solution
concentration, and solvent condition (shown in eq 30).
Moreover, by observing the accurate solution of the modulus
in eq 24, we see that in addition to its dependence on αE and
D/Dc it depends only on ε0 given by eq 9, which in turn
depends on the solution concentration and solvent condition.
However, this dependence is week, as seen in eq 37, Figure 5,
and Figure 6. That said, the critical diameter does depend
heavily on electrospinning conditions, as explained by eq 33,
but this has no effect when D is normalized by Dc. More details
on the effect of electrospinning conditions are provided in
Supporting Information section S5.
Because the relative modulus is asymptotic to Ex/E0 = 1 for

large diameters, we can use eq 35 in the following form for the
whole range of diameters:

≅ +
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(38)

This approximation converges to the large and small diameters’
asymptotes but does not provide an accurate description of the
transition zone. It is interesting to note that this result bears
some similarity in form (but differs in prefactor and exponent)
with that obtained by the confinement approach22 under
completely different premises.
The resulting theoretical longitudinal modulus compares well

with experimental data imported from studies published by Sui
et al.,4,8 Burman et al.,1,3,7 Liu et al.,5 Ji et al.,2 Stachewicz et al.,9

Papkov et al.,10 and Pai et al. (data diluted to avoid masking of
the other data sets),6 which used a variety of polymers

Figure 6. Orientation O and relative tensile modulus E/E0 as functions
of the relative fiber diameter D/Dc, where Dc is the critical diameter,
and E0, Ex, and Ey are the isotropic, longitudinal, and transverse tensile
moduli, respectively. The orientation is given by eq 21. The tensile
moduli are given by eq 24, and the longitudinal modulus
approximation (short-dashed line) by eq 35. The initial extension is
ε0 = 0.1. The tensile moduli of an aggregate’s unit element are related
by the ratio E1/E2, where E1 and E2 are the longitudinal and transverse
moduli of the element.
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(amorphous and semicrystalline), solutions, molar masses, and
measurement techniques (Figure 7). Each data set is fitted to

the theoretical solution, and its Dc is extracted. The
approximate power slope (−2) predicted in eq 35 is confirmed
by the log−log plot in the top inset. The values of Dc span a
wide range of 0.11−7.9 μm, with most common values in the
range of 400−650 nm. The polymers degree of polymerization
N varies between 108 and 2770 Kuhn segments, and Dc is seen
to increase proportionally with N (bottom inset), as predicted
by eq 33. Such dependency was also observed by Ji et al.,2

although with Dc ∝ N0.6 rather than Dc ∝ N. The data in Figure
7 are somewhat dispersed, as would be expected from the
several parametric dependencies of Dc in eq 33, most notably
the solution concentration and feed rate which could have been
varied during some of the tests. Note that the maximum
saturation value of Ex/E0 is far below the limit found in eq 27
for iso-stress condition, setting a high bar for future
improvement.

■ STRENGTH AND TOUGHNESS RISE
The study published by Sui et al.,4,8 and the pursuing study by
Papkov et al.,10 contain additional data on the relationship
between the diameter of electrospun nanofibers and their
strength and toughness, not available in the other studies cited
in Figure 7, allowing validation of further theoretical evaluation.
In addition, yield strength versus diameter data are available
from Pai et al.6 At the scale of the aggregate’s unit element (that
is a Kuhn monomer), dominated by inchain and interchain
interatomic bonds, we may assume a linear dependence

between strength and elastic modulus (the interatomic rupture
strain is invariant).63,64 Hence, we can write the strength of the
polymer aggregate by replacing the elastic components in eqs
24−26 with the corresponding strengths components:
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By doing so, we sum up the “weaknesses” (that is, σ−1) of all
the elements in a row in the x direction (Figure 4), and
similarly all the elements in a row in the y direction, in an
analogous way to the summing up of compliances in eq 23. In
this way, the weakest links in a given direction (that is, the links
representing intermolecular bonds of strength σ2) have a
significant impact on the aggregate strength, as should be
expected.
The isotropic strength is given at O = 0:
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and ασ is an engineering constant slightly smaller than 1:
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The maximum theoretically achievable strength occurs when O
= 1 and equals σ1, yielding
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The approximations in eqs 40−42 are based on the notion that
σ1 ≫ σ2 because the strength of covalent bonds (∼σ1) is much
higher than that of intermolecular bonds (∼σ2).

63,64 The
estimate for the longitudinal tensile strength at diameters
smaller than the critical diameter is (by analogy to eq 35), using
the approximation O ≅ 1 − (D/Dc)

2/2 as before

σ
σ

α
α

≅ − + ≅ <σ
σ

− −⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

D
D

D
D

D D(1 )
2

2 ,x

0 c

2 1

c

2

c

(43)

The resulting theoretical longitudinal strength compares
reasonably well with the strength experimental data imported
from the studies published by Sui et al.,4,8 Pai et al.,6 and
Papkov et al.10 (Figure 8a).
For the purpose of assessing the effect of molecular

orientation on the nanofiber toughness, we use the deformation
work density W as a measure, where Wx is the energy per unit
volume absorbed during a longitudinal tensile deformation,
obtained by integrating the area underneath the stress−strain
curve. The elastic portion of the work density scales as
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where Wel = σ2/(2E) and the right term is for diameters smaller
than the critical diameter, using the approximation O ≅ 1 −
(D/Dc)

2/2 with ασ = αE = 1. This work is equivalent to the
elastic energy released when the nanofiber breaks.

Figure 7. Experimental and theoretical relative longitudinal modulus
Ex/E0 as functions of the relative fiber diameter D/Dc, where Dc is the
critical diameter and E0 and Ex are the isotropic and longitudinal
tensile moduli, respectively. The experimental data are imported from
published studies1−10 and are normalized by an estimated E0. The
critical diameter used to normalized each data set is noted in the
legend. The theoretical solution (solid line) is given by eq 24 with αE =
1 and is for initial extension ε0 = 0.1. The approximate solution for
small diameters (dashed line) is given by eq 35, and its power slope
(−2) is indicated on the log−log plot in the top inset. The R-squared
value of the fit is R2 ≅ 0.8. Bottom inset: Dc vs the degree of
polymerization N (where data was available), with a line Dc ∝ N (see
eq 33).
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When the segmental orientation along the deformation
direction is high, interchain slippage increases and consequently
the plastic elongation increases. In other words, chains mobility
in the deformation direction increases. Increased chain mobility
was evidenced in decreased glass transition temperature Tg
while decreasing nanofibers diameter.11,67 Given the probability
Px that a monomer will be aligned with the longitudinal axis (eq
20), we can say that the plastic strain (that is, elongation) in
that direction scales as Px. In other words, the elongation is
assumed to be proportional to the fraction of aligned segments
in the aggregate, Px. This assumption is supported by the
elongation experimental data from Sui et al.,4,8 presented in
Supporting Information section S3. Hence, the plastic portion
of the work density may be scaled by Wx

pl ≈ Pxσx, assuming the
stress throughout the plastic deformation is approximately
constant and its average is equal to the strength σx. This scaling
bears similarity to the energy absorbed during plastic pullout of
an aligned reinforcing filler from a matrix, G ≈ Vfσml,

68 where
Vf is the filler volume fraction (analogous to Px), σm is the
matrix strength (analogous to σx), and l is the filler length scale
(analogous to b, the monomer length). Using eq 39 for σx
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where the right term is for diameters smaller than the critical
diameter, using the approximation for O as before with ασ = 1
and O → 1. The scaling of the total work (elastic and plastic)
absorbed during fracture can be estimated by
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where the right term is for diameters smaller than the critical
diameter, using the same assumptions as before and the notion
that E ≫ σ. We see that the contribution of the elastic
deformation energy is negligible. The prefactor in this estimate
may vary with respect to the assumptions used in this analysis;
however, the scaling dependence of the fracture energy on D−2

seems solid.
The total work approximation is depicted in Figure 8b and is

compared with the toughness experimental data imported from
the studies published by Sui et al.4,8 and Papkov et al.10 The
scaling and prefactor in eq 46 are generally corroborated by this
experimental evidence, even though the data are noticeably
dispersed, keeping in mind that the toughness is affected by
several parameters including modulus, strength, and chain
mobility. These results show a significant increase in toughness,
which scales with (D/Dc)

−2, as found for the stiffness and
strength but with a different prefactor. The improvement in
toughness is much more significant than the parallel improve-
ment in stiffness and strength (3 times higher); that is,
toughness responds more vigorously to the degree of
orientation. Furthermore, the increase in the plastic deforma-
tion energy is 3 times higher than in the elastic energy.
The improvement in toughness at small nanofiber diameters

is achieved most probably by favoring intermolecular sliding
over tearing of covalent bonds. It was also suggested that
toughness increases as a result of increased chain mobility due
to low degree of crystallinity (found in small diameter
electrospun PAN nanofibers),10 yet the sharp rise in toughness
occurs in noncrystalline polymers as well (PMMA nano-
fibers)4,8 (see Figure 8b). Another possible influencing factor is
structural defects due to interchain free volume and to porosity
caused by rapid solvent evaporation. Such defects, which could
vary as a result of stretching, molecular orientation, and

Figure 8. Experimental and theoretical relative strength and toughness as functions of the relative fiber diameter D/Dc, where Dc is the critical
diameter. The experimental data are imported from the studies published by Sui et al.,4,8 Pai et al. (yield strength, data diluted),6 and Papkov et al.10

The critical diameters used to normalize each data set are as in Figure 7, up to a constant prefactor close to unity. (a) Relative strength σx/σ0, where
σ0 and σx are the isotropic and longitudinal tensile strengths, respectively. The theoretical solution (solid line) is given by eq 39 with ασ = 1 and is for
initial extension ε0 = 0.1. The theoretical approximation (dashed line) is given by eq 43, and its power slope (−2) is indicated on the log−log plot in
the inset. The R-squared value of the fit is R2 ≅ 0.8. (b) Relative deformation work density Wx/W0, where W0 and Wx are the isotropic and
longitudinal work densities, respectively. The theoretical solution (solid line) is given by eq 45 with ασ = 1 and is for initial extension ε0 = 0.1. The
theoretical approximation is given by eq 46, and its power slope (−2) is indicated on the log−log plot in the inset. The R-squared value of the fit is
R2 ≅ 0.6.
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diameter shrinking, seem to account for the wide scattering of
the elongation experimental data4,8,10 (Supporting Information
section S3).
The reason for the great improvement in toughness is that

toughness gains from two simultaneous mechanisms, both
associated with enhanced molecular orientation: the strength-
ening mechanism due to anisotropy and the interchain sliding
mechanism due to alignment. At a high degree of orientation
(that is, at small diameters), the strengthening mechanism
exhibits a sharp rise (the denominator in eq 45 tends to zero),
whereas the sliding mechanism exhibits a moderate rise and
saturates (the numerator in eq 45 tends to a constant value; see
Supporting Information section S3). At high orientation,
because the longitudinal strength is strongly affected by the
weak links in the aggregate (the laterally aligned monomers), a
small decrease in the fraction of such links has a sharp positive
effect on the strength, whereas the elongation has already
reached saturation and is only marginally affected.

■ CONCLUSION
The simultaneous stretching and partial retraction of polymer
chains, under a constant strain rate extensional flow of a
polymer solution, reaches a steady chain extension early on.
Accordingly, the average segmental orientation, derived from
the extended conformation of the polymer chains, reaches a
steady value. The model shows that both extension and
orientation are going through an abrupt transition at a critical
strain rate, reminiscent of the known phenomenon of coil
stretch transition of a free unentangled chain, but occurring
here for a chain entangled in a network. Below the critical strain
rate chains are only slightly stretched but remain essentially
coiled, whereas above it they are highly stretched. The critical
strain rate is inversely proportional to the relaxation time of an
extended chain.
In the case of an electrospinning jet, the extended chain

nonequilibrium conformation is essentially retained in the solid
nanofiber as a result of the very fast solvent evaporation. The
nanofiber is represented by an aggregate of transversely
isotropic unit elements having directions corresponding to
the orientation probabilities. Each element is a chain segment
with high longitudinal stiffness and low lateral stiffness,
reflecting the intra- and intermolecular interactions of the
segment, respectively. For a given segmental orientation, the
aggregate’s elastic moduli (stiffness constants) are calculated,
exhibiting an abrupt transition in relation to the flow’s critical
strain rate, followed by a linear dependence on the strain rate.
The nanofiber diameter depends on the flow strain rate as

well, making it possible to relate between the elastic moduli and
the diameter. This relationship should not be construed as an
evidence for size dependence of the moduli, as these quantities
(that is, diameter and modulus) are only interrelated by
association through the strain rate. That said, the model shows
an abrupt rise in the longitudinal modulus for diameters smaller
than the critical diameter and at the same time a moderate
decrease in the lateral modulus. The critical diameter is not
universal but rather depends widely on process parameters. A
scaling law is derived, where the modulus sharp rise is inversely
proportional to the nanofiber diameter squared, conforming to
wide experimental evidence.
Similar dependencies, backed by experimental evidence, are

derived for the nanofiber strength and toughness, exhibiting a
simultaneous rise with the elastic stiffness. The rise in
toughness was found to be more significant than in stiffness

and strength, as it gains from both the increased strength and
increased chains mobility. The dependence of the stiffness,
strength and toughness on process rather than size presents a
simple path for tuning the mechanical properties of as-spun
nanofibers. Finally, the theoretical saturation values are much
higher than the maximum values observed in experiments,
setting a high goal for future improvement in the mechanical
properties of nanofibers. In view of the high interest in the
reinforcement of electrospun nanofibers with nanofillers such as
carbon nanotubes (CNTs),11 an analysis of such a nano-
composite structure, based on the approach of the current
paper, is included in Supporting Information section S4.

■ APPENDIX. CALCULATION OF HYDRODYNAMIC
FRICTION AND INITIAL EXTENSION

The polymer network structure determines the chain elasticity
and hydrodynamic friction. A polymer chain in a semidilute
solution consists of correlation blobs (equivalent to network
cells), which are smaller than the entanglement strands.
Because the blobs are space-filling (there are no gaps between
network cells), excluded volume interactions are screened by
neighboring chains, and the chain can be regarded as an ideal
chain of blobs (that is, a random walk of blobs).32 The chain
has N/g such blobs, each contains g ≈ ϕ−1/(3ν−1) monomers and
has a size ξ ≈ bϕ−ν/(3ν−1) for a θ-solvent and an athermal
solvent (the high temperature limit of a good solvent), where ν
is Flory’s exponent (1/2 for a θ-solvent and approximately
0.588 for a good solvent).32 Because the space is completely
filled with correlation blobs, hydrodynamic interactions are
screened, and the Rouse model can be used in calculating the
friction.32 The hydrodynamic friction coefficient of a single
correlation blob scales as ηsξ, and therefore the coefficient for
the complete chain scales as

ζ
η ξ

η ϕ≈ ≈ ν ν− −N

g
bNs

s
(1 )/(3 1)

(47)

The exponent of ϕ is 0.54 for a good solvent and 1 for a θ-
solvent. The θ-solvent condition marks the crossover between
good and poor solvents. The friction coefficient may somewhat
change along the jet flow as a result of very high extension
ratios and substantial mass loss due to evaporation, but these
effects are not expected to modify the overall scaling approach
applied in the current analysis (see Supporting Information
section S6).
The primitive path initial extension, ε = ε0, is given by

ε
ϕ

ϕ θ
≈ ≈ ≈

‐

ν ν
−

− −
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L

l
l

N
good solvent
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e0

0
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0

max
1

1/2
(1 )/(3 1)

2/3

(48)

where l0 ≈ bNe1
1/2ϕ−ν/(3ν−1) is an entanglement strand end-to-

end length (Figure 1b) for an athermal solvent and l0 ≈
bNe1

1/2ϕ−2/3 for a θ-solvent; lmax ≈ bNe1ϕ
−1/(3ν−1) is a strand’s

fully extended length for an athermal solvent and lmax ≈
bNe1ϕ

−4/3 for a θ-solvent; and Ne1 is the number of monomers
in a strand in a melt (a fixed value for a given polymer, of order
100−101).32 For typical values of solution volume concen-
trations used in electrospinning, ϕ = 0.01−0.4, we get a range
for the typical initial extensions, ε0 ≅ 0.01−0.3. Electrospinning
is also performed with polymer melts (ϕ = 1), but the current
study does not address this class.
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