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S1. Calculation of stretching equation and force function  

 Stretching equation. In a fast flow, the polymer network is stretched affinely with the flow 

velocity gradient 𝛻𝑣. Thus, a segment 𝑑𝐿 of an entangled chain will elongate at a rate of 𝑑𝐿𝛻𝑣. 

In this, we assumed that the flow is uniaxial and sufficiently fast, so that both 𝛻𝑣 and 𝑑𝐿 are 

aligned with the direction of the flow. Averaged over the entire primitive length of the chain, 𝐿 

(Figure 1c), the chain will elongate at a rate of 𝐿𝛻𝑣. This elongation generates an elastic tension 

in the chain, 𝐹(𝐿) − 𝐹(𝐿0) , where 𝐿0  is the chain length at equilibrium (at rest). This tension 

tends to retract the chain at a rate of −[𝐹(𝐿) − 𝐹(𝐿0)]/𝜁𝑁, where 𝜁 is the friction constant and 

𝑁 is the number of Kuhn monomers in the chain. Thus, the rate of change in length is  

𝑑 𝐿

𝑑 𝑡
≈ 𝐿𝛻𝑣 −

𝐹(𝐿) − 𝐹(𝐿0)

𝜁𝑁
 (S1) 

The ≈ symbol denotes a scaling relationship, where constants of order unity are omitted.  
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We define the relative chain extension by 𝜀 = 𝐿/𝐿max , where 𝐿max = 𝑏𝑁  is the contour 

length of a chain having 𝑁 monomers of (Kuhn) length 𝑏. Expressing Equation (S1) in terms of 

𝜀 , and normalizing the tension force by 𝑘𝐵𝑇/𝑏  to make it dimensionless (𝑘𝐵  is Boltzmann 

constant and 𝑇 is absolute temperature), we get1 

𝑑 𝜀

𝑑 𝑡
≈ 𝜀𝛻𝑣 −

1

𝜏
[𝑓(𝜀) − 𝑓(𝜀0)] (S2) 

where 𝜏 ≈ 𝜁𝑁2𝑏2/𝑘𝐵𝑇  is the relaxation time of a stretched chain in a tube. This is Rouse 

relaxation time,2 whose dependence on polymer and solution properties is calculated in section S2. 

When the electrospinning jet reaches steady state, the velocity gradient is constant, 𝛻𝑣 = 𝑠, and 

the time derivative of the relative extension is zero. Consequently, Equation (S2) reduces to 𝑓(𝜀) −

𝑓(𝜀0) ≈ 𝑠𝜏𝜀. 

An equation similar to Equation (S2), expressed in terms of the stretch ratio 𝜆 = 𝐿/𝐿0, was 

presented by Bhattacharjee et al. for uniaxial extensional flow,3 based on the tube model with chain 

stretching:4, 5 𝑑 𝜆 𝑑 𝑡⁄ ≈ 𝜆𝜀̇(𝑆11 − 𝑆22) − [𝐹(𝜆) − 1]/𝜏𝑅 , where 𝜀̇  is the strain rate (𝛻𝑣  in our 

terminology), 𝑆11 − 𝑆22  is the tube orientation with respect to the flow axis, 𝜏𝑅  is Rouse 

relaxation time, and 𝐹(𝜆) is the tension force normalized by the force at equilibrium. In fast flows 

such as electrospinning, the tube orientation term tends to unity.3 Substituting 𝜆 = 𝜀/𝜀0 (Equation 

(S3)) and 𝐹(𝜆) = 𝑓(𝜀)/𝑓(𝜀0) , and using 𝑓(𝜀0) ≅ 3𝜀0  (Equation (S4)), this equation becomes 

equivalent to Equation (S2). 

 

Force function. The approximation for the extension dependence of the elastic tension force 

(dimensionless), 𝑓(𝜀) ≅ 3𝜀(1 − 𝜀0)/(1 − 𝜀), is adapted from Ianniruberto and Marrucci.5 There, 

the force is defined by 𝐹(𝜆) = [(𝜆max − 1)/(𝜆max − 𝜆)]𝜆, where 𝜆 = 𝐿/𝐿0 is the stretch ratio, 𝐿 

is the tube length (primitive path), 𝐿0  is the length at equilibrium, and 𝜆max  is the maximum 

stretch ratio. 𝐹(𝜆) is normalized by the equilibrium tension 𝐹(𝜆0). Expressing 𝜆 in terms of the 

relative extension 𝜀: 

𝜆 =
𝐿

𝐿0
=

𝐿max𝜀

𝐿max𝜀0
=

𝜀

𝜀0
 (S3) 
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where 𝜀 = 𝐿/𝐿max  and 𝐿max  is the length of a fully extended chain (contour length). Thus, 

𝜆max = 1/𝜀0 and 𝜆0 = 1. Substituting into the equation of 𝐹(𝜆), and normalizing by the force at 

equilibrium (at rest), 𝑓(𝜀0) ≅ 3𝜀0, we obtain the force function 

𝑓(𝜀) = 𝑓(𝜀0) 𝐹(𝜀) = 3𝜀0

𝜀(1 − 𝜀0)

𝜀0(1 − 𝜀)
= 3𝜀

1 − 𝜀0

1 − 𝜀
 (S4) 

which is the function used in our study. 𝑓(𝜀)  is dimensionless as the force is normalized by 

𝑘𝐵𝑇/𝑏. 

 Another known form of the elastic force dependence on extension is the inverse Langevin 

function, which can be approximated by 𝑓 ≅ 𝜀(3 − 𝜀2)/(1 − 𝜀2) .6 This function has similar 

properties as the function described in Equation (S4), in that it retrieves the chain linear behavior 

at small extensions, 𝑓(𝜀) ≅ 3𝜀, and diverges nonlinearly at high extensions, 𝑓(𝜀) ≈ (1 − 𝜀)−1. 

However, the form in Equation (S4) enables an analytic solution to the stretching equation, and is 

therefore preferred for use in this study. 

 

S2. Calculation of chain relaxation time and initial extension 

Relaxation time. In a semi-dilute solution, a polymer chain consists of successive correlation 

blobs, which, together with the blobs of neighboring chains, are space-filling without gaps.7 

Consequently, excluded volume interactions of the chain are screened by nearby chains, and it is 

an ideal chain of blobs. The blob size is 𝜉 ≈ 𝑏𝜑−𝜈/(3𝜈−1), where 𝜑 is the polymer volume fraction, 

and 𝜈 is Flory's exponent (1 2⁄  for a θ-solvent and approximately 0.588 for a good solvent). Each 

blob contains 𝑔 ≈ 𝜑−1/(3𝜈−1)  Kuhn monomers, and there are 𝑁/𝑔  blobs in a chain. Because 

space-filling screens hydrodynamic interactions, the relaxation time can be calculated by the Rouse 

model:7 

𝜏 ≈ 𝜏𝜉 (
𝑁

𝑔
)

2

 (S5) 
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where 𝜏𝜉 is the relaxation time of a single blob 𝜉 immersed in a solvent of viscosity 𝜂𝑠. In the 

length scale of a blob, hydrodynamic interactions are not screened, and therefore 𝜏𝜉 is given by 

the Zimm model:7 

𝜏𝜉 ≈
𝜂𝑠𝜉3

𝑘𝐵𝑇
 (S6) 

The resulting Rouse relaxation time of the full chain is 

𝜏 ≈
𝜂𝑠𝜉3

𝑘𝐵𝑇
(

𝑁

𝑔
)

2

≈ 𝜏0𝑁2𝜑
2−3𝜈
3𝜈−1 (S7) 

where 𝜏0 ≈ 𝜂𝑠𝑏3/𝑘𝐵𝑇 is the relaxation time of a single monomer, and the term 𝜏0𝑁2 is the Rouse 

chain relaxation time in a dilute solution. The concentration dependence is a power function with 

an exponent (2 − 3𝜈) (3𝜈 − 1)⁄ , which equals 0.31 for a good solvent and 1 for a θ-solvent, the 

crossover condition between good and poor solvents. Note that, in a semi-dilute entangled polymer 

network, the relaxation time of a stretched chain scales with the degree of polymerization as 𝑁2, 

whereas the reptation time for a polymer chain at rest scales as 𝑁3 and is therefore much slower.7 

 

Initial extension. The initial extension is given by 𝜀0 ≈ 𝐿0/𝐿𝑚𝑎𝑥 ≈ 𝑙0/𝑙𝑚𝑎𝑥 , where 𝑙0 ≈

𝑏𝑁𝑒1
1 2⁄

𝜑−𝜈/(3𝜈−1)  is an entanglement strand end-to-end length for a good solvent and 𝑙0 ≈

𝑏𝑁𝑒1
1 2⁄

𝜑−2 3⁄  for a θ-solvent; 𝑙𝑚𝑎𝑥 ≈ 𝑏𝑁𝑒1𝜑−1/(3𝜈−1) is a strand's fully extended length for a good 

solvent and 𝑙𝑚𝑎𝑥 ≈ 𝑏𝑁𝑒1𝜑−4/3 for a θ-solvent; 𝑁𝑒1 is the number of monomers in a strand in a 

melt, which has a fixed value for a given polymer.7 Thus, the initial extension of an entangled chain 

at rest is 

𝜀0 ≈
𝑙0

𝑙𝑚𝑎𝑥
≈ 𝑁𝑒1

−1/2
{
𝜑

1−𝜈
3𝜈−1 good solvent

𝜑2/3   𝜃-solvent
 (S8) 

The exponent of 𝜑 is 0.54 for a good solvent and 0.67 for a θ-solvent. 
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S3. Calculation of chain elongation and orientation 

In order to calculate the elongation and orientation parameters, we use Equation (7) of the main 

text to determine the probabilities of monomer directions. Denoting the stretching force in the y-

direction by 𝑓𝑦 = 𝑓(𝜀) = 𝑓 and the force at rest by 𝑓𝑥 = 𝑓𝑧 = 𝑓(𝜀0) = 𝑓0, one has 

𝑃𝑦
± = 𝑒∓𝑓/2𝑄

𝑃𝑥
± = 𝑃𝑧

± = 𝑒∓𝑓0/2𝑄
 (S9) 

where 𝑄 = cosh 𝑓 + 2 cosh 𝑓0  is a partition function. Substituting for the extension and 

orientation (Equation (8) in main text) 

𝜀 = 𝑃𝑦
+ − 𝑃𝑦

− = − sinh 𝑓 /𝑄

𝜀0 = − 1 3⁄ tanh 𝑓0

𝑂 = 3 2⁄ (𝑃𝑦
+ + 𝑃𝑦

−) − 1 2⁄ = (cosh 𝑓 − cosh 𝑓0)/𝑄

 (S10) 

Note that at small initial extension 𝑓0 ≅ 3𝜀0, and that at high extension 𝑓 diverges, in agreement 

with the 3D force equation (Equation (3) in the main text, Equation (S4)). Extracting 𝑓 and 𝑓0 in 

terms of 𝜀 and 𝜀0, and substituting into the equation of 𝑂, the orientation is obtained in term of 

the extension1  

𝑂 =
−(1 − 3𝜀0

2) + √1 − 9𝜀0
2 + 9𝜀0

2𝜀2 + 3𝜀2

1 + 3𝜀0
2  (S11) 

Equation (S11) corresponds to Equation (9) of the main text. 

Near a boundary, using Equation (7) of the main text with adorption in the z-direction, the 

probabilities of monomer directions are 

𝑃𝑦
± = 𝑒∓𝑓/2𝑄

𝑃𝑥
± = 𝑒∓𝑓0/2𝑄

𝑃𝑧
± = 0

 (S12) 

where 𝑄 = cosh 𝑓 + cosh 𝑓0 is a partition function. Substituting for the extension and orientation 
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𝜀 = − sinh 𝑓 /𝑄

𝜀0 = − 1 2⁄ tanh 𝑓0

𝑂 = (cosh 𝑓 − 1 2⁄ cosh 𝑓0)/𝑄

 (S13) 

Note that at small initial extension 𝑓0 ≅ 2𝜀0, and that at high extension 𝑓 diverges, in agreement 

with the 2D force equation. Extracting 𝑓 and 𝑓0 in terms of 𝜀 and 𝜀0, and substituting into the 

equation of 𝑂, the orientation is obtained in term of the extension  

𝑂 =
−(3 − 8𝜀0

 2
) + 3√1 − 4𝜀0

 2
+ 4𝜀0

 2
𝜀

2

8𝜀0
 2  

(S14) 

This is Equation (10) of the main text. 

The explicit values of 𝑓 and 𝑓0 are not needed in this modeling, as the resulting orientation 

functions 𝑂(𝜀, 𝜀0)  and 𝑂(𝜀, 𝜀0)  are independent of them. Therefore, the orientation analysis 

applies for a general case of forces, which can account for entropic (elastic) energy due to stretching, 

as well as for excluded volume repulsive interaction energy to ensure avoidance of multiple lattice 

occupation. The latter could be incorporated as an approximate mean potential component in the 

force,7-9 to represent the potential induced by far monomers and by neighboring chains, without 

impairing the validity of Equations (S11) and (S14) for a semi-dilute solution. 

The orientation Equations (S11) and (S14) do not account for the radial strain rate of magnitude 

−𝑠/2  associated with the longitudinal strain rate 𝑠 , which exerts radial compression on the 

polymer chains (see section 3.5 in the main text).10 We examine now the impact of this compression 

on the molecular orientation. The compression acts to reduce chain extension in the radial direction 

from the extension at rest, 𝜀0, down to a lower value, with a minimal possible extension of 𝜀0=0 

at the jet center. The corresponding minimal radial forces are 𝑓𝑥 = 𝑓𝑧 = 0 . The resulting 

orientation equation at small longitudinal extensions is 𝑂 = −1 + √1 + 3𝜀2 ≅ 3𝜀0
2/2 , a 

negligible effect (𝑂 increases from about 0 to: 𝑂 ≅ 0.025 in the MEH-PPV and 𝑂 ≅ 0.0017 in 

the PVP). At high extensions, 𝜀 is virtually independent of 𝜀0 (equation (4) in the main text), and 
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the effect is negligible as well. A similar argument applies to the orientation of the adsorbed chains, 

𝑂. 

S4. Scaling approximations for chain elongation and orientation  

Approximations for the extension and orientation expressions (Equations (4), (5), (9) and (10) 

of the main text) are useful, as they provide simple scaling relationships with respect to the relative 

strain rate, 𝑠/𝑠𝑐. The following approximations were obtained by series expansions at small 𝜀0. 

The chain extension scales as 

𝜀 ≅ 𝜀0 (1 +
𝑠

𝑠𝑐
) 𝑠 ≪ 𝑠𝑐

𝜀 ≅ 1 − (
𝑠

𝑠𝑐
)

−1

𝑠 ≫ 𝑠𝑐

𝜀 = 𝜀0
1/2

𝑠 = 𝑠𝑐

 (S15) 

where 𝑠𝑐 is 3/𝜏 far from a boundary and 2/𝜏 near a boundary, and 𝜀0 is used near a boundary. 

Far from the boundary of a filler, the orientation scales as 

𝑂 ≅ 3𝜀0
2

𝑠

𝑠𝑐
𝑠 ≪ 𝑠𝑐

𝑂 ≅ 1 −
3

2
(

𝑠

𝑠𝑐
)

−1

𝑠 ≫ 𝑠𝑐

𝑂 ≅
3

2
𝜀0 𝑠 = 𝑠𝑐

 (S16) 

where 𝑠𝑐 = 3/𝜏. Near the boundary of a filler, the orientation scales as 

𝑂 ≅
1

4
+

3

2
𝜀0

2 𝑠

𝑠𝑐
𝑠 ≪ 𝑠𝑐

𝑂 ≅ 1 −
3

2
(

𝑠

𝑠𝑐
)

−1

𝑠 ≫ 𝑠𝑐

𝑂 ≅
1

4
+

3

4
𝜀0 𝑠 = 𝑠𝑐

 (S17) 

where 𝑠𝑐 = 2/𝜏. Note that at the critical strain rate the orientation depends only on the initial 

extension. 
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S5. Additional experimental data of molecular and optical anisotropy 

 

Figure S1. a Topography map of a single PVP/MEH-PPV/WO3 electrospun fiber. b-c 

Corresponding maps of the near field excited optical extinction signal by the nanofiber, (TNF) (b), 

and of the dichroic ratio, γ (c). d Map of Herman’s orientation parameter 𝑂 derived from the data 

shown in (c) and following the methodology described previously:11 𝑂 =
𝑅−1

𝑅+2

2

3 cos2(𝛼)−1
, where 

𝑅 =
𝐼∥

𝐼⊥
=

1−𝛾

1+𝛾
 and α is the angle formed by the direction of the fiber length and a reference direction 

that is experimentally determined (α is about 25 degrees). 
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Figure S2. Line profile analysis of γ (a) and of the Herman parameter 𝑂 (b) displaying the cross 

section along the vertical direction, y (positive downward), which is highlighted as dashed segment 

in the inset image shown on the left. 
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