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A Differential Game of Surveillance Evasion 
of  Two Identical Cars I 

I. GREENFELD 2 

Communicated by J. V. Breakwell 

Abstract. A partial solution of a differential game of surveillance 
evasion is presented. The dynamics is that of two identical cars, with 
constant speeds and bounded turn rates. The pursuer's surveillance 
zone is circular. The game of kind and the game of degree are solved 
for ratios of the surveillance radius to the minimal turn radius equal to 
or greater than 7r + 2. A barrier is constructed, and regions of strategies 
are separated through the use of dispersal and universal surfaces. A 
synthesis of a composite game of two identical cars is outlined, covering 
the space outside the surveillance zone as well as that inside it. 

Key Words. Surveillance evasion, differential games, two identical cars, 
game of kind, game of degree. 

1. Introduction 

This paper  treats a zero-sum, two-player,  fu l l - in format ion  differential 

game of survei l lance evasion. The two identical  cars'  dynamics  is used, and  

the game space is the radial  zone of surveil lance.  

The model ,  though extensively simplified for reasons of convenience ,  

represents a class of pract ical  cases, whereby two similar  vehicles have a 
relatively small  ratio of  survei l lance radius to turn  radius. Examples  may 
be derived from mari t ime scenarios.  Other  appl ica t ions  such as coll is ion 

avoidance  may also be considered.  
Only  a few researches treated games of survei l lance evasion. In  this 

set of games, the pursuer ' s  goal is holding the evader  within a survei l lance 
zone,  rather  than captur ing  the evader. Al though the kinematics  may be 

t Part of this research (the game of kind, Ref. 1) was carried out in the Faculty of Mechanical 
Engineering in the Technion, Haifa under the supervision of J. Lewin. The author is indebted 
to J. Lewin for his guidance. 
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identical, the two problems are essentially different, mainly by the definition 
of  the game space and the players' objectives. 

The game of  pursuit of  two identical cars was solved fully by Merz 
(Ref. 2). Due to the identical dynamics, it bears resemblance to this work. 
The homicidal chauffeur game of kind of  surveillance-evasion was solved 
by Dobbie (Ref. 3). Lewin and Breakv~ell (Ref. 4) solved the game of degree 
of the same model, the solution being quite complicated. Lewin and Olsder 
(Ref. 5) solved the same dynamics for a conic surveillance zone. 

This work presents a full solution of  the surveillance evasion game of 
kind and degree of  two identical cars with a radial surveillance zone, at 
part of  the parametric space. The definition of the problem and the kinem- 
atics are presented in Section 2. Section 3 outlines the basic concepts of  
solution [using Isaacs' methods, (Ref. 6)] and the general equations of  
optimal paths. The game of  kind and the construction of the barrier are 
presented in Section 4. The game of degree is presented in Section 5. Section 
6 includes a comparison to the game of pursuit by Merz, and an attempt 
to synthesize a composite game of two identical cars. 

2. Problem of Surveillance-Evasion 

2.1. Definitions. The two players, a pursuer (or surveiller) P and an 
evader E, move in a two-dimensional realistic space. Their dynamics is 
identical, and consists of  constant speed W = 1 and minimal turn radius 
R = 1. The turn rate is controlled by the control variables u and v of P and 
E, respectively. Both players have full information of the current state of 
the game, but no information as to the opponent 's  current control. 

The pursuer has a surveilling device with a range of effectiveness of 
radius K. The game goes with the evader trying to get out of the surveillance 
zone within minimal time, while the pursuer wishes to prevent it or, if  not 
possible, to prolong his surveillance for as long as possible. Finding their 
optimal strategies and the optimal paths is the essence of this work. 

Two aspects of  the solution will be discussed: The game of  kind (GOK) 
where the barrier B, separating an escape zone EZ and a capture (or 
surveillance) zone CZ, is constructed; and the game of degree (GOD), 
where the regions of strategies and the optimal paths in the escape zone 
are found. 

In the GOK, the barrier is constructed as a nonleaking semipermeable 
surface, by Isaacs' methods. The barrier strategies, u* and v*, and paths 
are defined. 

In the GOD, the payoff is defined as the time to termination (escape) 
Ty, which P maximizes and E minimizes using their optimal strategies u* 
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Fig. 1. Coordinate systems in the game o f  two identical cars. 

and v*, respectively. Thus, a saddle-point sufficiency condition is satisfied, 
and the value T (the time to go, under optimal play) is defined. The optimal 
strategies and paths are outlined by Isaacs' methods. 

2.2. Coordinate Systems and Kinematic Equations. We shall use two 
coordinate systems to denote the relative position between the players: 
Cartesian (x, y, 4') and polar (r, 0, 4')- See Fig. 1. They constitute a three- 
dimensional relative game space S (the state space) with a cylindrical 
boundary C (see Fig. 2), 

x~+y~=k 2, 0<_~<_2~. (1) 

Y 

t BUP÷ 

' x ~  x- N U z - -  BUP- P 

Fig. 2. Usable part and its boundaries. 
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dimensionless kinematic equations of the two identical cars' T h e  
dynamics shall be, using retrograde time ~'(~-~ T s -  t; ~ = - 2 ) ,  

= - s i n  qJ + uy, (2a) 

y = - c o s  q~ + 1 - ux, (26)  

q~ = u - v, (2c) 

with 

lul_<l, Iv[.<-- 1. (2d) 

The vectograms of  the game are convex, which implies extremal con- 
trols. Yet, they are not strictly convex; thus, intermediary values are also 
possible. 

The only parameter of the problem, in the dimensionless form, is K, 
which is the ratio of the surveillance radius to the minimal turn radius. 

Termination is defined on the boundary C by 

~o = - c o s ( C o -  0o) + cos  0o < 0, (3) 

where the index 0 denotes initial conditions in the retrograde sense. The 
usable part UP is, therefore, 

l~Ool < 210ol, (4) 

and the boundaries of the usable part (BUP's) are the two spirals 0o = 20o 
and the two half-circles qJo = 0, ro = K. Figure 2 depicts the BUP's on the 
boundary C, in the state space. On the figure, ( + )  indicates right side 
(0 < 7r), and ( - )  indicates left side ( 0 >  ~-). 

3. General Solutions for the Path Equations 

3.1. Optimal Controls and Differential Equations. The necessary con- 
ditions consist of Isaacs' main equations (ME), the kinematic equations, 
the adjoint equations, and the control constraints. The necessary conditions 
yield a set of differential equations which is solved by retrograde integration, 
with initial conditions defined on the usable part. 

The Hamiltonian H in the GOD is 

H ( X ,  VT, u, v )= Tx~ + Ty9+ T+6+ 1 

= uA + vT,  + T~ sin q~ + Ty cos 4' - Ty + 1, 

A =- xTy - yT~  - T~,, 

(5a) 

(Sb) 
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where X ~ (x, y, 0) is the state vector and V T =- ( T~,, Ty, T~,) is the gradient 
of  the value T. The payoff integrand is 1. 

Isaacs' MEt  is 

rain max H ( X ,  7 T, u, v) = 0. (6) 

By optimizing, we get ME2 along an optimal path, 

H*--- H ( X ,  VT,  u*, v*) 

= ! A [ - I T ,  i+ Tx sin 0 +  Ty cos qJ - Ty+ 1 =0,  (7) 

which is satisfied by the candidates for optimal strategies u* and v*, 

u* =sign A=- o-1, (8a) 

v* = s ign( -  T,) -= o-z. (8b) 

Here, sign(-) is the sign function, nondefined when the argument is zero. 
A and T, are the switch functions of the controls of P and E, respectively. 

The adjoint equations along an optimal path are 

7"x = OH*/Ox = o" 1Ty, (9a) 

Ty = OH*/Oy = o-~ Tx, (9b) 

7"o = OH*/O0 = Tx cos g t -  Ty sin 0. (9c) 

The adjoint equations are used to determine the values of the switch 
functions. 

In the GOK, v - ( v x ,  Vy, v,),  the normal to the barrier, heading into 
the capture zone, substitutes V T in the equations, with a complete analogy 
in the solutions thereafter. Since there is no payoff in the GOK, the payoff 
integrand is zero, which renders a slight difference in the Hamiltonian. 
Therefore, ME2 in the G O K  is 

H *  =- H ( X ,  v, u*, v*) 

= Ia [ - ]v , [  + vx sin • + IJy COS 1// - -  P), = 0 .  (10) 

3.2. Optimal Path Equations. The initial conditions at r =0  (not 
necessarily on the boundary C), using a parametric form, are 

X0 = (ro sin 0o, r0 cos 0o, Oo), ( l l a )  

VTo= (sl sin s2, sl cos s2, T+o), ( l l b )  

the parameter vectors being (ro, 0o, g'o) and (sl, s2, T,o). 
We present general solutions of the two cases encountered in this work: 

the case of  extremal controls, whereby o"1, o-2 = :kl; and the case of  zero 
control for E, whereby o-1 = ±1 and o-2 = 0. 
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The  fol lowing equat ions  are also valid for  the G O K ,  with V T subst i tuted 
by  u. The  solut ion is a t ta ined by  re t rograde  integrat ion o f  the k inemat ic  
equat ions  (2), with the controls  (8), and  o f  the adjoint  equat ions  (9), with 
the aid o f  M E 2  (7). The  initial condi t ions  are (11). 

The  op t ima l  pa th ' s  general  equat ions  are given below. 

Extremal  Controls: o-, = + 1, o-2 = ± 1. The  state vector  X is given by  

x = ro sin(0o + o'~ ~-) + o- 1(1 - cos 7) 

+ o-2[cos(qJo + t r : )  - cos qJ], (12a) 

y = roCoS(Oo+o-: )+sin  .r 

- o-2[sin(~o + o - : )  - sin qJ], (12b) 

qJ = 0 o +  (trl - o-2) T. (12c) 

The  gradient  o f  the value T is given by  

Tx = Sl sin(s2 + o-it) ,  (13a) 

Ty = sl cos(s2+ o-lr), (13b) 

T o = T~,o- sl o '2 [cos (0o-  s z -  o ' : )  - c o s ( O 0 -  s2)]. (13c) 

The  switch funct ions  are 

A = rosl s i n ( 0 o -  s2) - Too+ o'lsl[cos(sz+ o ' : ' )  - cos s2] (14) 

and  T ,  is as in (13). 

Zero Control for  E: O - l = + l ,  o ' z=0 .  Assuming  the existence of  a 
s ingular  op t imal  pa th  c rea ted  by  7", = 0, and  using the p roper ty  of  cont inui ty  
of  V T across tha t  pa th  (due  to convexity) ,  we m a y  find E 's  control  by taking 
T,  = 0. Differentiat ing (13), we get 0-2 = 0. The  validi ty of  this a s sumpt ion  
will be  es tabl ished later. 

The  state vector  X for  this case is 

x = ro s in(0o+ o - : )  - 7  sin qJ + o-1(1 - c o s  r ) ,  

y = r0 cos(0o+ o-1~) - • cos 0 + sin r,  

4J = qJo+ o-it. 

(15a) 

(15b) 

(15c) 

Tx and Ty are the same as in (13), while T,  = 0. The  switch funct ion A is 
the same as in (14). 
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4. Game of Kind (GOK): Construction of the Barrier 

4.1. General Concepts. We look for a composite,  closed, nonleaking 
barrier B, dividing the game space into an escape zone EZ and a capture 
zone CZ. The existence of  such a barrier may be demonstrated by observing 
that some initial conditions lead to sure escape and some to safe capture. 
For example,  a safe capture is guaranteed when the players '  velocity vectors 
are parallel and P duplicates E's strategy. 

The barrier is constructed as a semipermeable surface by means of the 
necessary conditions and the path equations of  Section 3. Appropriate  initial 
conditions are applied. 

4.2. Initial Conditions for the Barrier. We shall look for a natural 
barrier, as defined by Isaacs. A natural barrier is tangent to the boundary  
C along the BUPs, in such a way that its normal v coincides with the 
normal  to C heading into the game space. Thus, a nonteaking barrier is 
guaranteed. 

Using Vo=( - s in  00, - c o s  0o, 0) with (13) and (14), while the para- 
meters of  (11) are sl = -  1 and s~ = 00, we obtain the barrier 's initial switch 
functions on the BUPs, 

Ao = V~o = 0. (16) 

Now, using the first derivatives of  the switch functions, and with the 
aid of  (16), we get the optimal controls close to C (hut not on it), 

u* = ~rl = sign A = sign/k0 = sign(sin 0o), (17a) 

v* = o'2 = sign( - v~ ) = sign( - ;~,o) = sign[sin( 0o - ~o) ]. (17b) 

Note that we have used the relationship A = -vx .  
We shall discuss two cases: 

(i) 0o ~ 0. We designate the right side (0o < ~r) by ( + )  and the left 
side (00> ~') by ( - ) .  The optimal controls (17) are o-~ ± = - o ' 2  ± = ± t for 
a spiral BUP, and o- 1 ± = 0"2"+ = ±1 for a circular BUP. We shall examine, 
for example,  the right-side cases. 

On a right spiral BUP, we have 

ro = 4 sin 2 0o/K > 0, ~o = 0, 

which means that the retrograde path goes outside the game space, and 
therefore is invalid. 

On a right circular BUP, we have 

r(~) = K, g'0") = 0, 
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which means that the retrograde path  coincides with the BUP, and therefore 
is invalid too. 

(ii) 0o = 0. In this case, q~o = 0 on both BUPs, and both switch func- 
tions in (17) are zero. We shall use the second derivatives to find the optimal 
controls near  C, 

o o  

u* = o"1 = sign A0 = sign 0"1, (18a) 

v* = o'2 = s ign ( -  ~,~) = sign 0-2. (18b) 

These equations may render extremal controls, as well as zero controls 
(since the sign function is nondefined at zero). Thus, we have to check all 
nine possible combinations of  controls (nine cases). 

We shall use the following r-derivatives: 

o o o  

r0 = r0 = 0, (19a) 

o o o  2 0-2 (19b) 
ro = Or2-- 1, 

°~'o ° = 3(o '2-  0",)2/K. (t9c) 

The possible combinations of  controls are: 

(a) 0"j = 0, o'2 = :el (two cases). Here, °ro ° = 1 > 0; thus, the retrograde 
path goes outside the game space. 

(b) o"1 = 0-2 = 0 (one case). Here, there is no relative motion. 
(c) o"1 = o'2 = :el (two cases). Here, r ( r )  = K and qt(r) = 0; thus, the 

retrograde path coincides with the circular BUP. 
(d) 0-1 = -0-2 = +1 (two cases). Here, °r°o° = 0, °~'o ° = 12/K > 0, same 

as (a). 

(e) 0-1 = ± 1 ,  o-2=0 (two cases). Here,  °~o = - 1  < 0 ,  which means that 
the retrograde path goes inside the game space, and therefore these are the 
only valid candidates for initial controls on the barrier. 

The optimal controls o-1 = ±1 and 0-2 = 0 point out the existence of two 
singular paths of  the type called evader 's  universal line (EUL). The EULs 
emanate from the point (0, K, 0) to both directions determined by the sign 
of  0-1. 

4.3. Typical Maneuvers on the Barrier. Tributary paths emanate (in 
retrograde time) from each EUL. A typical play starts on a tributary path, 
where each player turns right or left (0-1, 0-2 = +1), and continues on one 
of  the EULs, P still turning and E moving straight (0-2 = 0) on the tangent 
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P 

Fig. 3. M a n e u v e r  on the barr ier ,  0-1 = 1, 0- 2 = --1,  0. 

to both turn radii. Upon termination of  the play, P completes his turn and 
is situated on the tangent, at a distance K behind E. 

The set of  all tributary paths composes the barrier's envelope. By 
symmetry, the barrier surfaces from the right side (~rl = 1 ~ EUL +) and the 
left side (or 1 = - 1  ~ E U L - )  intersect at a pursuer's dispersal line (PDL). 
Beyond that intersection, all paths are discarded. It can be shown that, on 
the PDL, P is dominant. He has two options of turning direction, while E's 
direction is either unique or dependent  on P's selection. There is also a 
region where E is dominant. This occurs on an evader's dispersal line (EDL), 
which will be discussed later. 

Figure 3 presents a typical maneuver on the barrier. P is turning right, 
while E is turning left and then moving straight on the tangent to both turn 
radii. 

Figure 4 shows a typical maneuver which starts on the PDL. Here, P 
has two options of  turning, while E chooses a left turn and then a straight 
motion on the tangent to P's selected turn radius. 

Figure 5 shows another PDL maneuver, with the difference that here 
E's turning direction is dependent on P's selection, such that ~r2 = ~rl. This 

Fig. 4. 

\ E 

Pursuer ' s  d i spe r sa l  po in t  on the barr ier ,  cr I = :=1, 0-2 = - 1 ,  0. 



Fig. 5. 

Fig. 6. 

Pursuer ' s  dispersal  poin t  on  the barrier,  tr~ = +1, or2 = +1, 0. 

phenomenon was termed by Isaacs instantaneous mixed strategy. A slight 
difficulty arises, as E must have a small delay in his move, resulting from 
the lack of  information as to his opponent 's  current control. This drives E 
off the barrier into the capture zone and necessitates the redefinition of the 
barrier as a semipermeable surface, located at an infinitesimal distance off 
the original barrier, in the escape zone. 

Figure 6 demonstrates a typical maneuver which starts on the E D L  
Here, E has two options of  turning, while P chooses his direction depen- 
dently, in such a way that 0-1 = 0"2. The same difficulty arises as before with 
a similar treatment. This EDL relates to the phenomenon termed by Isaacs 
the perpetuated dilemma, in view of  the fact that E can delay his decision 
along it. 

4.4. Analytical Solution of the Barrier's Equations. Using the general 
path equations of  zero control for E (15) and the initial conditions of  Section 
4.2, we may write the equations of  the EULs: 

x = 0"1[(K - z) sin z +  1 - c o s  z], (20a) 

Evader ' s  dispersal  point  on  the barrier,  ~r I = 4-1, ~2 = ~:1. 
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y = ( k -  r) cos ~, + sin r, (20b) 

~P = o'1 r. (20c) 

We take the EUL's equations (20) as a set of  initial conditions at time 
r l ,  and substitute them into the general path equations (12) to obtain the 
tributaries. Then, we eliminate rl to get the barrier equations, 

x = x(qJ, ¢) = [K - o5~ + (1 - 0-1o-2)r] sin(~p + o-2z) 

- ( ~ 1 - ~ 2 )  c o s ( 0 +  o ' 2 t ) -  o-2 cos ~ +  0-1, (2 ta )  

Y = Y ( O ,  ~') = [K - 0-1~0 + (1 - o-lo-2)~'] cos(0 + o-2r) 

+ (0-1 - 0"2) sin(q~ + o-2r) + o'2 sin ~0, (21b) 

while rt is 

~ = o h 0 -  (1 - o'1~r2z). (22) 

Remark. For the case 0-1 = o-;, the tributaries have a constant ~, and 
(21) are circles of radius K - [ 0 1  with center at 

x = 0-1(1-cos 0), y = 0-1 sin ~0. 

In (21) and (22), ~'1 is the retrograde time of  motion on EUL, and ~- 
is the retrograde time of  motion on the tributary. The total time of  a play 
is rt = z + rl  . 

Equations (21) represent the barrier surfaces on the right (o"1 = 1) and 
on the left (o-1 = -1) .  We can display cross sections of  constant 0 through 
the barrier, using the parameter r and the appropriate values of  o-~,2- We 
have four strategy regions a, b, c, d, as defined on Fig. 7. 

We designate by ( + )  the right-side values and by ( - )  the left-side 
values. We use (21) to equate both sides, on the line of  intersection between 
them, to obtain the barrier 

x(q,+, + + ~" ; o-z)= x(qt , r ; o-~-), (23a) 

y(qJ+, r+; o-~-)=y(~p , z ; o-~). (23b) 

Remark. The numerical values of  q~± should maintain 0-<@+<-2¢r 
and -2zr  -< ~ -  -< 0. 

Equations (23) represent four combinations of o-2 and o'~, of which 
only three practically exist. 

Eliminating ~-+ and ~- from (23), then using the relationship 0 - =  
~ ÷ - 2 ¢ r  (at a common ~-cross section), and substituting the appropriate 
values of  o'~- and ~0~-, we get the equations of  the PDL, 

x = x[~b, r(O)] = x(~/,), (24a) 

y = y[tp, z(~p)] = Y ( O ) .  (24b) 
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strategy r~jions EUC /-BUP- 

1 -1 { . ~ u l _  + 
©-1 1 
@-1 -1 

' \Ez 
~BUP + 
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Fig. 7. Schema t i c  desc r ip t ion  of  the bar r ie r  in the s ta te  space ,  - ~r ~ ~, -< ~r, K ~ ~ ' +  2. 

A numerical solution is mandatory for the transcendental equations 
(23). While solving them, the values of o'~- and o-j are selected in such a 
way that (22) shall always yield 71 ~ 0. 

It is to be mentioned that, in the GOK, the total time to termination, 
+ 

from both sides of  the PDL, is not the same, meaning z~ # ~-~-. 

4.5. Description of the Barrier. The construction described above 
yields a closed barrier for K - ~ ' + 2  (K is the ratio of the surveillance 
radius to the minimal turn radius). It can be shown that, for K < ~r +2,  the 
left and fight wings of  the barrier, constructed in Section 4.4, do not fully 
intersect, and thus are leaking. Since we conjecture that a closed barrier 
exists in this game, a different method of construction for K < ~- + 2 should 
be applied. This is left for further research. 

Using the equations of  the gradient of  the value (13) and the switch 
functions (14), with the appropriate initial conditions from Section 4.2 and 
Eqs. (20), it can be shown that, for K - ~r + 2, no switching occurs along 
the EULs or the tributaries. This confirms the validity of the analysis. 

Figure 7 depicts schematically the barrier in the state space for K >-- 
~-+2, in the region -Tr-< q~-< 7r, with the capture zone removed. Note that 

= ~r and @ = - ~  is identical. 
We shall now describe the barrier. 
The EULs terminate at point D(0, K, 0). EUL+(DB) represents a right 

turn for P, and EUL-(DB' )  represents a left turn for P. The tributaries from 
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each side of each EUL represent a right turn or a left turn for E. The 
surfaces of  tributaries form the barrier. The resulting strategy regions are 
designated a, b, c, d. 

We have tributaries of the type o-1 = o-2, with constant to and a circular 
shape, and tributaries of the type o-1 =-0"2, with time-changing tO and a 
complicated geometry. The barrier intersects the boundary C slightly above 
the spiral BUPs. At ~p = 0, it coincides with the circular BUPs. The barrier 
is not tangent to C anywhere except at point D. 

The intersection of the right and left surfaces of tributaries creates the 
PDL. The EULs touch the PDL at points B and B', on which one of the 
options for E is a straight line motion (depending upon P's decision). Along 
the section BB' of the PDL, the typical maneuvers are as in Fig. 5. Along 
the sections A'B and A"B', the maneuvers are similar to Fig. 4. Thus, we 
have the following strategy combinations on the PDL: a-d, b-d, b-c (a-c 
does not exist). For example, b-d exists in Fig. 5, and a-d in Fig. 4. The 
PDL intersects the boundary at points A' and A',  and not at A(0, - K ,  0), 
as might be expected from symmetry. The circular arc A'AA" is the EDL 
(evader's dispersal line), which separates two regions of different strategies 
for both P and E. 

Figures 8 and 9 depict to-cross sections through the barrier in the state 
space for K =6  and K = ¢r+2 in the region - T r -  < ~b-<0. These figures were 
obtained by computing the barrier equations (2t) and finding the PDL 
graphically. In both figures, lines with arrows indicate tributaries in a real 
view (o-1 = 0-2), and lines without arrows indicate cross-sections through 
tributaries (o-1 = -o'2). The PDL, EUL, and the strategy regions are indicated 

Fig. 8. 

Yr 

-180 ° 

o 

~ ~ _  3o~ 6°° -30 ° 
P y=o ° 

0-cross sections of tile barrier, K = 6, - ~  -~ 0 ~ 0. 
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0* 

× 

-k30 o 

PDL j ~=& 

Fig, 9. ~b-cross sections of the barrier, K = 7r+2, -~ r -  < ~b-<0. 

on the figures. The region 0 <- ~b --- Ir can be depicted using symmetry around 
the axis y. 

The barrier attained is smooth, except on the PDL. As K is growing 
bigger, the escape zone is smaller and the capture zone bigger. At K > 100, 
the escape zone becomes a nonsignificant port ion of  the game space. 

The case K = 6 in Fig. 8 is typical: EUL ÷ exists up to ~b ~ - 1 3 8 . 5  ° at 
point B of  Fig. 7. The PDL starts at point  C ( 0 , - 2 . 0 4 ,  -~r)  and ends on 
the boundary  at point A ' (2 .1 , -5 .7 ,  0), The value X - - ' 2  is typical. We can 
see that the barrier intersects the boundary  above the spiral BUPs and that, 
at ~b = 0, it coincides with the circular BUP. At this region, the barrier is 
not tangent to the boundary,  as may be seen if we take a 0 cross section 
through the game space. 

The case K = ~r + 2 in Fig. 9 represents the smallest K possible for our 
method of  barrier  construction. It  can be seen that the tributaries at ~b = -Tr 
are tangent to each other at the point (0, 0 , -~ - ) .  A smaller K will cause 
the opening of  the barrier  at this point and its vicinity. Depicting the real 
space maneuvers at this point  reveals its uniqueness. The critical value 
K = ~r + 2 may be obtained by substituting ~b = ~r into the tributary equations 
(21) with cq = cr 2. 

5. Game of Degree (GOD) 

5.1. General Concepts. In the GOD,  we look for optimal strategies 
and paths in the escape zone EZ. We use the necessary conditions and the 
path equations of  Section 3. Appropriate  initial conditions are applied on 
the usable part. 
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The method of  solution is somewhat similar to that of  the GOK; but, 
due to higher dimensionality, it is more complicated. Here too, the solution 
is valid for K-> ~r + 2 only. 

5.2. Initial Conditions. Since the GOD is a game with integral payoff, 
V To is codirectional with ~'o. With the aid of ME2 (7), we obtain on the 
usable part the parameters of (11), 

s a  = 1/[cos  0 o -  cos (4 'o -  0o)], s2 = 0o, T,~o = 0. 

Thus, in a similar way to Section 4.2, we find that the initial switch functions 
are zero [as in (16)], and that the optimal controls near the boundary C 
are the same as in (17). The controls in (17) switch on the UP at 00 = ~r 
(for 0-0 and at 00 = 4'0 (for 0-2). Thus, the sign regions on the UP are 

0-1= 1: 0 <  00< 7r, 0-2 = 1:4'0 < 00 < 2"rr; (25a) 

0-1 = -1 :  ~r < 0 <21r, o ' 2 = - 1 : 0 < 0 o < 4 ' o .  (25b) 

On the switch lines 0o = ~ and 0o = 0o, we examine the second deriva- 
tives of  the switch functions near C. Thus, we have 

u* = cr a = sign ,4o = - s ign  oh, 0o = ~r, (26a) 

v* = o'2 = s ign(-  J~o) = sign 0-2, 00 = 0o, (26b) 

The equation of 0-2 indicates the existence of  an evader's universal 
surface (EUS), emanating from the line 0o = 4'o on C. The equation of o-1 
indicates the existence of a pursuer's dispersal surface (PDS), emanating 
from the line 0o = ~- on C. Note that this equation is not valid for 0-~ # 0. 
The identity of  each singularity may be verified by examining the velocity 
vectors at both sides of  each switch line, to be either dispersive or convergent. 

Figure 10 summarizes the initial conditions on a spreading of  C. The 
strategy regions are designated by the letters a to d, in correlation with the 
regions in the G O K  (Fig. 7). In Fig. 10, ( + )  designates right side (o-1 = 1) 
and ( - )  designates left side (0-1 = - 1 ) .  

5.3. Typical Maneuvers in the GOD. Differently from the GOK, in 
the GOD we have both paths emanating (in retrograde time) from the 
usable part UP and paths emanating from the universal surfaces EUS (the 
tributaries). Thus, a part of  the pursuits terminate by moving on the EUS, 
E moving in a straight line and P still turning at the moment of  termination. 
The other part of  the pursuits terminate on the UP directly, both players 
still turning at the moment of termination. At termination, E escapes. 

By symmetry, optimal paths from the right side (0-1 = 1) and the left 
side (0-1=-1) ,  from both types, EUS's and UP's, intersect on points of 
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Fig. 10. Initial strategies on the usable part. 

equal time to termination r, (the value T = r,) for both directions of motion. 
The set of all these points forms the pursuer's dispersal surface PDS. The 
paths beyond the PDS are discarded. As in the GOK, P is dominant on the 
PDS, and E's maneuvers are dependent. 

Figure 11 shows a typical maneuver which terminates on the UP. P is 
turning left, while E is turning left. At termination (escape), the distance 
between the players is K, and both are still turning. 

Figure 12 shows a typical maneuver which includes motion on the 
EUS. P is turning right, while E is turning left and then moving straight, 

E 

Fig. 11. Maneuver terminating on the usable part in the game of degree, tr~ = -1 ,  o, 2 = -1 .  
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Fig. 12. 

P 

Maneuver terminating on the evader's universal surface in the game of  degree, ~r~ = t ,  

o'2 = --1, 0. 

on the line which goes through P's point of  termination and is tangent to 
E's turning radius. 

The variety of types of paths and strategy regions composes the various 
sections of  the PDS. Two examples follow. 

Figure 13 shows a typical maneuver which starts on the PDS. Both 
options of  P lead to termination on the UP directly. It is interesting to see 
that, in this case, 0ff = 0o (this fact may be derived analytically). 

Fig. 13. Pursuer's dispersal point in the game of degree, ~r~ = z~l, cr 2 = - 1 .  
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Figure 14 shows another  PDS maneuver,  whereby a right turn for P 
leads to an EUS type of  termination (E moving straight), while a left turn 
for P leads to termination on the UP directly. 

While, in the cases of  Figs. 13 and 14, E's direction of  turning is unique 
(as in Fig. 4 of  the GOK) ,  a case where E's direction depends on P's 
selection is also possible (as in Fig. 5 of  the GOK).  

5.4. Analytical Solution of the GOD. As in the GOK,  we may use the 
general path  equations for 0-2 = 0 [Eq. (15)] and the initial conditions of  
Section 5.2 to get the equations of  the EUSs. Those equations serve as sets 
of  initial conditions at time Zl for the tributaries. We substitute them into 
the general path equations (12) and eliminate T1. We use the total time of 
an optimal play (the value) ~ = r +  ~1, where rl is motion on EUS and z 
is motion on the tributary. Thus, we have the following tributary equations: 

x = x(qJ, % 0o) = [ K  + 0"2(00 - qJ) - (1 - o',0-2)'rt] sin(0o + 0-,r~) 

+ o'2[cos(0o + 0 - 1 r t )  - cos 0]  + 0-1(1 - cos rt), (27a) 

y = y(O, % 0o) = [K  + 0"2(00 - ~0) - (1 - 0-,0-2)'rt] cos(0o+ oh'rt) 

-o-2[sin(0o+ 0-1rt)-sin 0] +s in  r,. (27b) 

Using the general path equations (12), with initial conditions on the 
UP from Section 5.2, then eliminating ~0o and using rt =z ,  we obtain the 

t = 876 ---- 0o* 

Fig. 14. Pursuer's dispersal point in the game of degree, tr I = +1, ~2 = -1 ,  0. 
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following UP paths equations (paths terminating directly on UP): 

x = x(qJ, % 00)= K sin(0o+ 0.1"ct)+ 0.1(1- cos ~-~) 

+ 0.2[cos(0 + o'2r~) - cos 0], (28a) 

y = y(~O, % 0o)= K cos(00+ cq~'~) + sin r, 

- o'2[sin(0 + o-2~-t) - sin ~]. (28b) 

Also, we have the relationships 

~'1 = -o '2(0o- if) + (1 - o'10.2)% (29a) 

~0o = ~O - (0.1 - 0.2) r ,  (29b) 

Remark. In (27) and (28), we could eliminate q)o, instead of 0o or r~, 

but it proves to be inconvenient. 
Equations (27) and (28) represent the optimal paths, both those emanat- 

ing directly from the UP and those emanating from the EUSs, on the right 
side (0.1 = 1, designated by + )  and on the left side (o-1 = -1 ,  designated by 
- ) .  On the whole, we have 23 = 8 types of trajectories. We shall designate 
them by two letters, the first letter stands for the sign region a, b, c, d (defined 
in Figs. 10 and 15); and the second letter is U (for UP) and E (for EUS). 
For example, bE is an EUS-tributary with 0"1 = 0"2 = 1. 

' t  

Fig. 15. 

stra~/ r~ns  

® 1 -1 
(~) 1 1 PDS~ 

~Eus- 
j . ' !  (~) 

PDS_~ ~--~ N 

Schematic description of  the game of  degree in the state space, 2 7r ~ tp ~ 0, K -> 7r + 2. 
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We can display cross sections of constant 0 through the paths, in the 
state space, using the parameters % and 00, and the appropriate values of 
O"1,  2 • 

The paths from both sides meet on the PDS at points of equal value 
T = r,. On the point of intersection, we may use Eqs. (27) and (28) to equate 
both sides, 

x (0  +, rt +, 0F; o-~-) = x (0 - ,  r~-, 0o; o'2), (30a) 

y (0  +, ~'~+, 0~; o-+)= Y(0-, r~-, 0o; 0"2). (30b) 

Remark. The numerical values of 0o and tO should maintain 0-< 0~-, 
tp÷---2zr and -2~r--- 0o, tO--<0. 

Equations (30) represent (22) 2= 16 combinations of U~,-paths, EUS ±- 
tributaries, and try:, of  which only 12 practically exist. A maximum of four 
combinations exists at a specific 0-cross section. For example, the combina- 
tion a U - c E  stands for a dispersal point created by the intersection of a 
UP-path with trl = -0"2 = 1 and an EUS-tributary with o-~ = -0"2 = -1 .  Figure 
13 represents the combination aU-dU. Figure 14 represents the combination 
aE-dU. 

Using the equality of the value on the PDS (% = ÷ r, = z~-), and the 
relationships 0 - =  @+-2~r and 0'-= 0 +-2~r (at an arbitrary point in the 
game space), then substituting the appropriate values of o-~- and or;-, and 
eliminating 0F and 0o, we have the equations of the PDS, 

x = x[0, ~5, 00(4, r~)] = x(0, %), (31a) 

Y=Y[O, % Oo(O, %)] =Y(0, 7t). (31b) 

A numerical solution is mandatory for the transcendental equations 
(30), except for combinations of the type *U-*U. While solving numerically, 

÷ and o-~- and the appropriate combinations are selected in the values of o-2 
always yield rl - 0 (for UP-paths) and o'20o < o'200 such a way that (29) shall " :~ > 

(for EUS-tributaries). 

5.5. Description of the Paths and the Singular Surfaces in the GOD. As 
mentioned before, the solution of the GOD presented here is valid for 
K >- ~r +2  only, for which a closed barrier was ascertained. The complemen- 
tary region awaits another research. 

We use the equations of VT [Eqs. (13)] and the switch functions (14), 
for both UP-paths and EUS-tributaries, with the initial conditions of  Section 
5.2, to examine the possibility of further switching of controls. Though we 
conjecture that no further switching occurs for K >- ~- + 2, it is impossible 
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to prove it analytically, the equations being transcendental. Thus, each case 
should be verified numerically to support this conjecture. The cases that 
we have checked comply with it. 

Figure 15 depicts schematically the singular surfaces and optimal paths 
of the GOD, for K __> ~- + 2, in the region 0 -< ~O _< 27r, with the capture zone 
and the barrier removed. Note that ~ = 0 and ff = 2~r is identical. 

We shall now describe the GOD. 
The PDS divides the escape zone EZ into a region of right turns for 

P and a region of  left turns for P. These two regions are again divided, each 
by the relevant EUS, into regions of  right turns for E and regions of  left 
turns for E. The four regions were designated a, b, c, d according to Fig. 15. 

The four regions are filled with optimal paths, which start (in real time) 
on the PDS, or on the nonusable part (NUP),  or close to the barrier. Some 
of  them are EUS-tributaries, and some terminate directly on the UP. As in 
the GOK, paths of 0-1 = ~r 2 (regions b and d) are ~0-constant. 

Paths of  the various types are shown, as examples, on Fig. 15. The 
EUSs themselves consist of  optimal paths of the type EUL, that start on 
the PDS or close to the barrier, and terminate on the UP along the line 
$o = 0o. EUS+'s borders are DQ along the UP, D/~ along the barrier, EUS-  
and BQ along the PDS. EUS-  goes symmetrically. On the EUSs, E moves 
in a straight line. 

The PDS's borders are the line AQA on the boundary C, the arcs AA' 
and AA", and the line A'CA" on the barrier. The intersection of  the PDS 
with the barrier is close to the PDL, but does not coincide with it, except 
in points A', A", C of  Fig. 7 and Fig. 15. This is due to the differences in 
times to terminations, which is the result of  the different definition of  the 
payoff in the GOK and the GOD. EUSs, though, intersect the barrier at 
the EUL's of  the barrier (lines D/~ and D/~') up till the PDS or the PDL 
(as applicable). 

In fact, no paths of  the GOD, including paths on the EUS, intersect 
the barrier, but rather thay come very close. There is a discontinuity in V T 
across the barrier. 

On the PDS, P has two options of heading. As in the GOK, on one 
region of  the PDS (the surface BQB') E's control depends on P's decision 
(combination b*-d*), and on the other two regions of  the PDS, E's control 
is unique (combinations a*-d* and b*-c*). A combination aU-dE is shown, 
as an example, on Fig. 15. 

Figures 16 to 20 present various g,-cross sections of  constant 0o through 
the state space of  the GOD, in the region -¢r-< ~b-< 0, for K = 6. These 
figures were obtained by computing the path equations (27) and (28) and 
by finding the PDS graphically, by means of  isochrones (lines of  constant 
time to termination z,). Isochrones from right and from left, having the 
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Fig. 16. 
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Fig. 17. ~b-cross sections of constant 00 in the game of  degree, K = 6, O -~ -180°. 
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Fig. 20. 0-cross sections of constant 00 in the game of degree, K = 6, t~ = -30 °. 

same %, were intersected to yield the PDS. The isochrones were computed 
by (27) and (28), taking ~-, constant and varying the parameter 00. 

Figure 16 shows a typical 0-cross section through the escape zone and 
the singular surfaces. The various types of  regions are noted, using the 
notation of  this section. It may be noticed that the PDS, in this case, consists 
of the combinations aU-dU,  aU-dE,  aE-dE,  and bE-dE.  Note also that a 
bU type of path does not exist in this cross section. 

Figure 18 is a full representation of Fig. 16, ~ = -170  °. Here, paths in 
a real view (regions of  o-1 = o,2) are indicated by arrows, and the lines without 
arrows (in regions of o-1 = -try) are cross sections through paths of constant 
0o. ~t is indicated on some points of the PDS. Note that, except for the 
combination aU-dU,  lines of  equal 10oi do not meet at the same point on 
the PDS (though quite close to each other, in this case). 

Figure 17 depicts the symmetric case ff = -180  °. Here, the cross section 
of the PDS is a straight line, created by the single combination bE-dE.  

Figure 19 shows the case ~/, = - 9 0  °. Here, the EUS ÷ vanishes completely, 
and the PDS's combinations are aU-dU,  aE-dU (a new one), and aE-dE.  
This case shows clearly that the PDS slightly deviates from the PDL on the 
barrier, and the difference in 7t is indicated. 

Figure 20 shows the case ~b = - 3 0  °. Here, the PDS-cross section is 
approaching the circular BUP. 

Note  on the numerical  solution. Due to the variety of combinations, 
and due the absence of  preinformation as to the border  surfaces dividing 
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the various regions, the numerical solution is complicated, and full automa- 
tion of the computations seems not to be feasible. Thus, the construction 
is done step-by-step, at each step verifying the absence of switching, the 
validity of Eqs. (29), and the borders of the current region. The PDS is 
plotted either graphically or by solving a set of two transcendental equations 
(30) with two independent variables. 

6. Composite Game of Two Identical Cars 

This research is the complementary problem of the game of pursuit 
and evasion solved by Merz (Ref. 2). The two problems are dual, but still 
each is unique. They both use identical dynamics. In the game of pursuit 
and evasion (GPE), the game space is outside the radius K, and P minimizes 
while E maximizes the time to capture. In the game of surveillance-evasion 
(GSE), the game space is inside K, and P maximizes while E minimizes 
the time to escape. Thus, the players' objectives in the two games are 
contrary. This duality continues with contrary optimal control functions, 
with substitution of the typical maneuvers and singular surfaces between 
the players, and other features. 

The uniqueness of the GSE starts with the barrier construction. The 
barrier is not a natural barrier, as opposed to the GPE, because it is not 
tangent to the BUPs. Thus, we have in the GSE paths that start on the 
nonusable part (NUP). Also, all the paths on the barrier terminate on the 
EUL, E moving straight. The GSE holds an additional singular phenomenon 
of the type, called the perpetuated dilemma, which is a dispersal surface 
for E. 

Maybe the most interesting is the sensitivity of the GSE to changes in 
the parameter K. Though we conjecture that a closed barrier exists in the 
GSE, our construction holds only for K -> ~ + 2, whereas a different method, 
probably more complicated, should be applied for K < 7r + 2. In the GPE, 
the same method of constructions holds for all values of K. 

Figure 21 summarizes some of the properties of the GPE and the GSE 
on a common tp-cross section of the game space. In that figure, entities of 
the GSE are designated by the index e, and those of the GPE by p. For 
example, PUSO is a left pursuer's universal surface in the GPE. 

A composite game of two identical cars, incorporating the GPE and 
the GSE together, may be synthesized. The concept of such a game maintains 
that all the 2-D realistic space is measurable for the state vector and that 
P is striving to gain surveillance over E inside the region of radius K. In 
such a game, the various sections of the boundary C are singular surfaces 
of various types, and definition of barriers is needed. For example, a path 
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Fig. 21. Schematic 0-cross section in the composite game of two identical cars, K---7r +2. 

starting in the escape zone of the GSE (EZ~) leads always to the escape 
zone of  the GPE (EZp). But a path starting in the capture zone of the GPE 
(CZp) leads sometimes to the escape zone of  the GSE (EZ~). This may be 
an interesting problem for further research. 

7. Conclusions 

The problem of  surveillance-evasion in the dynamics of  two identical 
cars turns out to be an interesting and intriguing duality to the problem of  
pursuit and evasion of the same dynamics. 

This work presents a full solution of  the problem, in the region K - 
~ + 2 .  The solution includes the construction of a closed barrier and 
definition of  the strategy regions, singular entities and optimal paths, on 
the barrier  and inside the escape zone. Some unique features of  the game 
were discussed. 

It seems worthwhile to pursue further research for the region K < ~" + 2, 
for which the solution does not hold. This region of K represents cases of  
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small surveillance radius and large turn radii, which may be applicable to 
some practical problems like collision avoidance. 

A generalization of  the game of  two identical cars may be obtained by 
uniting the game of surveillance-evasion and the game of  pursuit and 
evasion. This may cover fully the problem of  surveillance. Also, other kinds 
of  surveillance zone geometries, like conic surveillance zone, may be used 
with the same dynamics. 
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