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a b s t r a c t 

We present a theoretical analysis of the elastic stresses in a composite reinforced with 

beaded fibers by extending the classic Cox shear lag theory. The motivation for reinforc- 

ing a composite with beaded fibers is to improve both strength and toughness, two often 

conflicting properties. It is found that owing to their geometry beads intermittently placed 

on a fiber enhance fiber anchoring in the matrix, and can potentially dissipate energy by 

deforming the matrix during failure. The composite stiffness is shown to improve com- 

pared to a composite with beadless fibers, particularly when the beads are large and stiffer 

than the surrounding matrix. The stress profiles in the fiber, bead, matrix and along their 

respective interfaces incur periodic perturbations induced by the beads, modeled by Hill 

equation. For given elastic constants and bead geometry, these profiles reveal the weakest 

link loci in the structure, and consequently determine the composite strength and failure 

mode. A finite element analysis is presented that confirms our results. The bead-fiber and 

bead-matrix interfaces may be tuned by choice of materials and coatings to achieve de- 

sired mechanical properties. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. 
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1. Introduction 

Achieving simultaneous stiffness, strength and toughness in synthetic materials at all size scales is an ongoing challenge

in research and engineering, and compromises are unavoidable ( Ritchie, 2011; Tsai et al., 1990; Yang et al., 2016 ). In biology,

hierarchical composite structures such as bone and wood suggest a strategy based on a multilevel design, from nanoscale to

macroscale ( Barthelat et al., 2016; Greenfeld et al., 2016; Greenfeld and Wagner, 2015; Sui et al., 2016; Sui and Wagner, 2009;

Wegst et al., 2015; Weiner and Wagner, 1998 ). Fiber reinforced composites suffer from the same dichotomy: a strong fiber-

matrix interface guarantees high composite strength but low toughness, whereas a weak interface dissipates more energy

during deformation and thereby benefits toughness but induces lower strength ( Cottrell, 1964; Greenfeld and Wagner, 2015;

Kelly, 1970 ). To solve this conflict, structural variations such as bone-shaped fibers and intermittent bonding have been

suggested ( Atkins, 1975; Bagwell and Wetherhold, 2003; Beyerlein et al., 2001; Gao et al., 2011; Jensen and McKnight, 2006;

Phanthien, 1981; Wetherhold et al., 2007; Wetherhold and Lee, 2001; Zhu et al., 1998 ). 

Recently, we introduced the concept of intermittent beading, in which the composite is reinforced by beaded fibers

( Greenfeld et al., 2018 ) ( Fig. 1 ). The beads serve as topological anchors of the fibers in the matrix, transmit the stress from

the matrix to the fibers more efficiently, and absorb energy by deforming the matrix during failure. Thus, beaded fibers have

the potential of improving both strength and toughness in a given fiber-matrix system. 
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Fig. 1. A composite reinforced with beaded fibers. Epoxy beads on glass fibers embedded in epoxy matrix. Birefringence image viewed by a polarized 

optical microscope. 

Fig. 2. Deposition of epoxy beads on glass fibers. (a) Dip coating device: a frame carrying fibers is immersed in a resin reservoir, and a controlled 

stage draws the frame upward at constant speed. (b) Intermittent beading spontaneously created by the Plateau-Rayleigh instability (SEM). The circled 

magnification shows coating of the fiber between beads, 10 0–20 0 nm thick. (c) Beads of different sizes; the numbers indicate the drawing velocity in mm/s 

(optical microscope). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The beads are formed on the fibers by dip coating ( Fig. 2 a). When drawn from a reservoir, the fibers get coated by a layer
of resin, which spontaneously breaks down into almost evenly spaced drops as a result of the Plateau-Rayleigh instability

( de Gennes et al . , 2004 ). After curing, the beaded fibers ( Fig. 2 b) are embedded in a matrix and the composite is cured. The

beads size, shape and frequency depend on the liquid coating radius (fiber radius + coating thickness) and surface tension,

as described in detail in ref. ( Greenfeld et al., 2018 ) and in the Supporting Information. Roughly, the bead radius is close to

twice the coating radius, and the distance between beads (wavelength) is close to ten times the coating radius. The coating

radius is determined by the drawing velocity of the fiber from the resin reservoir, making it possible to tune the beads size

and frequency ( Fig. 2 c). 

Under load, a beaded fiber composite may eventually break as a result of failure in any of its components – fiber, ma-

trix or bead, or in any of the interfaces–fiber-matrix, fiber-bead or bead-matrix. It is therefore essential to understand the

evolution of stresses in these regions under an external increasing load. Unlike a regular fiber composite, whose structure

consists of just two materials and one interface, the structure of a beaded fiber composite consists of three materials and

three interfaces as well as an intricate bead geometry, and therefore its analysis is significantly more challenging. Here, we

focus on theoretical analysis of the elastic behavior of this complex structure, by extending the classic Cox shear lag theory

( Cox, 1952 ) to beaded fibers. The core model is described in Section 2 , whereas the detailed results and implications are

provided in the subsequent sections. The results are supported by finite element analysis of a representative structure. The

composite stiffness (tensile modulus) is calculated for various material combinations, bead sizes and bead shapes. The inter-

facial bonding stresses are also calculated, and their impact on the composite failure mode is assessed. The maximum fiber

stress and interfacial bonding stresses are also calculated, and their impact on the composite strength and failure mode is

assessed. 
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Fig. 3. Dimensions and stresses in a beaded fiber composite. See definition of parameters in the text. (a) Composite unit cell with a six-bead fiber (dark) 

and a neighboring fiber (faint) (b) Single bead axisymmetric profile. 

Fig. 4. Packing of beaded fibers. (a) Ring of closest neighbors. R denotes the radial distance between the centers of nearby fibers. (b) Non-staggered 

hexagonal packing. (c) Staggered square packing. The dashed triangle and square denote unit cells. 

 

 

 

 

2. Elastic model 

Consider a composite consisting of beaded fibers embedded in a matrix ( Fig. 3 a), subjected to longitudinal tension along

the x axis. The bead contour shape, determined by surface tension of the liquid drop before curing, is described by its local

radius z ( Fig. 3 b) for given bead peak radius r b and contact angle θ c with the fiber ( Greenfeld et al., 2018 ) (see Supporting

Information). The beads are assumed to be evenly dispersed along each fiber at wavelength λ, and the beaded fibers are

orderly packed within the matrix with a radial distance R between the centers of nearby fibers ( Fig. 4 a). 
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Given the fiber radius r f , the fiber volume fraction is proportional to the cross sectional area fraction of the fibers with

respect to the composite unit cell 

V f = P f 

(
r f 

R 

)2 

(1)

where P f is the fibers packing factor, 2 π/ 
√ 

3 for hexagonal packing ( Fig. 4 b) and π for square packing ( Fig. 4 c)

( Piggott, 2002 ). The maximum obtainable volume fraction V f max occurs when the beads are in contact with neighboring

beads (non-staggered packing) or neighboring fibers (staggered packing) ( Greenfeld et al., 2018 ). In non-staggered hexagonal

packing, the total cross sectional area of fibers in a triangular unit cell with edge R min = 2 r b is that of half a fiber. As seen

in Fig. 4 c, in staggered square packing, the total cross sectional area of fibers in a square unit cell with edge R min = r f + r b
is that of a full fiber. Thus, 

V f max = π/ 

{
2 

√ 

3 r 2 
b 
/r 2 

f 
non − staggered hexagonal packing (

1 + r b / r f 
)2 

staggered square packing 
(2)

We are interested in the elastic stress transfer from the matrix to the fibers through the beads, assuming perfect bonding

in the three relevant interfaces: fiber-matrix, fiber-bead or bead-matrix. The model extends the known shear lag theory for

beadless fiber composites ( Cox, 1952; Piggott, 2002 ) to beaded fiber composites, and applies similar assumptions and ap-

proximations. Given the composite longitudinal stress σ 1 ( Fig. 3 a), the composite tensile strain ɛ 1 is assumed to be constant

around the ring R of closest neighboring fibers. Both σ 1 and ɛ 1 are construed as mean values, as the arbitrary longitudinal

position of beaded fibers with respect to their lateral neighbors may cause local variations. However, σ 1 and ɛ 1 should aver-

age over a cross section through a large number of fibers, and therefore the stresses in the bead and matrix can be modeled

as axisymmetric, that is uniform at any angular position around the x axis. 

Fibers longitudinal arrangement, that is the regular or random staggering of fibers with respect to their neighbors, is

known to have an effect on the stiffness, strength and failure mode of unidirectional composites ( Lei et al., 2012; Sun et al.,

2015; Zhang et al., 2010 ). In beaded fibers, the relative longitudinal position of beads with respect to beads in neighboring

fibers is expected to cause an additional effect. As the focus in the current study is on the stress transfer properties of

beads, longitudinal arrangement considerations are not incorporated in the model, but their effects should be similar to

those in beadless-fiber composites. Accordingly, the model is invariant with respect to the relative longitudinal position of

neighboring fibers (so long as their beads do not interfere), and it therefore applies to both non-staggered and staggered

packing of fibers and beads with the proper packing factor and maximum volume fraction applied. 

Under the applied tension, an infinitesimal ring element dx (dotted region in Fig. 3 b) is subject to a shear stress τ f on

its internal radius r f (the fiber radius) and a shear stress τ on its external arbitrary radius r (refer to definitions in Fig. 3 ).

Tensile stresses have a negligible effect on the ring static equilibrium, as the predominant stresses are in shear. Thus, the

force balance between the internal and external shear forces, 2 π r f dx τ f and 2 π rdx τ , yields 

τ f = τ
r 

r f 
= G 

du 

dr 

r 

r f 
(3)

τ was replaced above by Hooke’s law in shear, τ = Gd u/d r where G is a shear modulus, u is the longitudinal displacement

at radius r ( Fig. 3 b), and du / dr is the shear strain at radius r (the radial displacement is negligible). The shear modulus G is a

function of r , such that when r is inside the bead volume, G = G b (bead modulus), and when it is inside the matrix volume,

G = G m 

(matrix modulus). 

Separating the variables and integrating over the full radial range of the ring element from r f to the bead local radius z

(at position x ) and further on to the unit cell radius R , we get 

∫ u R 

u f 

du = τ f r f 

∫ R 

r f 

dr 

Gr 
= τ f r f 

(∫ z 

r f 

dr 

G b r 
+ 

∫ R 

z 

dr 

G m 

r 

)
(4)

where G b was used for the first integration interval and G m 

was used for the second interval. Note that the integration

range is always valid as R > z for all fiber packing configurations. At fiber sections without beads z = r f and thus the first

integral vanishes. Eq. (4) marks the departure of the model from the Cox model for beadless fibers, in which the integration

is directly from r f to R with a single shear modulus, G m 

. 

We perform the integration in Eq. (4) 

u R − u f = 

2 τ f r f 

E f n 

2 
(5)

where we introduced the dimensionless function 

n 

2 = 

2 G m 

E f 

[
G m 

G b 

ln 

(
z 

r f 

)
+ ln 

(
R 

z 

)]−1 

(6)
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As the beads profile z is a periodic function of x with period λ, n is also a periodic function of x with period λ. n can be

rewritten by expressing R in terms of V f and P f using Eq. (1) : 

n 

2 = 

2 G m 

E f 

[
1 

2 

ln 

(
P f 

V f 

)
−

(
1 − G m 

G b 

)
ln 

(
z 

r f 

)]−1 

(7) 

The reaction shear force on a fiber element dx (hatched region in Fig. 3 b), 2 π r f dx τ f , induces a change d σ f in the fiber

stress and a longitudinal net force π r 2 
f 
d σ f . These forces are in equilibrium so that 

τ f = − r f 

2 

d σ f 

dx 
(8) 

The negative sign means that d σ f is negative, in other words the fiber stress changes in the opposite trend of τ f . Substi-

tuting τ f into Eq. (5) we get 

u R − u f = −
r 2 

f 

E f n 

2 

d σ f 

dx 
(9) 

Differentiating with respect to x 

d u R 

dx 
− d u f 

dx 
= − 1 

E f 

d 

dx 

(
r 2 

f 

n 

2 

d σ f 

dx 

)
(10) 

Substituting d u R /dx = ε 1 (the composite strain at radius R ) and d u f /dx = σ f / E f (the fiber strain, given its tensile modulus

E f ) and rearranging, we obtain the differential equation: 

d 

dx 

(
r 2 

f 

n 

2 

d σ f 

dx 

)
= σ f − ε 1 E f (11) 

The boundary conditions are σ f (−L ) = 0 and σ f (L ) = 0 as the fiber stress at its ends is zero (the fiber end-face bond-

ing is neglected). Alternatively, the second boundary condition can be set as d σ f (0) /dx = 0 at the fiber center, because,

due to symmetry, τ f changes direction (sign) at that point and therefore tends to zero ( Eq. (8) ). Once σ f is obtained by

solving Eq. (11) for given beads profile z and elastic constants, τ f can be calculated from Eq. (8) . Note that the differential

Eq. (11) becomes independent of the fiber radius if the length variables x, z and L are normalized by r f . The equation reverts

to the classic Cox shear lag model for beadless fibers when the bead and matrix are of the same material ( G m 

= G b and

hence n 2 = n 2 cox = 4 G m 

/ [ E f ln ( P f / V f )] ). 

Eq. (11) , with its boundary conditions and the function n ( Eq. (7) ), encapsulates all the parameters involved in the model.

These include the applied external strain ɛ 1 , the elastic constants of the structural components E f , G m 

and G b , the fibers

volume fraction and packing factor V f and P f , the fiber geometry r f and L , and the beads contour shape (profile) z . The

model retains the generality of the function z , which can describe any desired beads profile, even with irregular shapes and

repetitions. However, in the current study we use Plateau-Rayleigh beading, in which, once the bead radius r b and contact

angle θ c are given, the beads shape and wavelength λ are determined and z is fully defined (see calculation and plot in

Supporting Information). The number of beads in a fiber, N , is readily extracted from the fiber length 2 L and the distance

between beads λ, typically N = � 2 L/λ� . 
Eq. (11) is a second order linear ordinary differential equation, whose coefficient r 2 

f 
/ n 2 is an even periodic function of

x with period λ. The particular solution of this equation is σ f = ε 1 E f . The homogenous part of the equation, seen when

the term ɛ 1 E f is omitted, is known as Hill’s equation ( Hill, 1877 ). Hill investigated this type of equation in 1877 to assess

the periodic disturbance induced by the sun’s gravity on the lunar perigee, and it appears often in models of periodic

phenomena in engineering and physics ( Magnus and Winkler, 1979 ). However, an explicit general solution of this equation

is not available, and therefore analytic approximations and/or numerical solutions must be used. The modeling results and

implications presented in the following sections were obtained by numerical calculations, but, for the sake of better physical

insight, analytic approximations are provided as well. 

3. Fiber stresses 

Examples of the fiber tensile and interfacial stresses for epoxy matrix reinforced by high-stiffness carbon fibers are de-

picted in Fig. 5 for fibers with different length and bead numbers, and are compared with the shear lag theory for beadless

fibers. The bead stiffness plays an important role in the stiffness of a beaded fiber composite. To demonstrate its potential,

the bead stiffness was chosen in that example as five times higher than that of the matrix. Apparently, that effect vanishes

when the bead has the same stiffness as the matrix. The beads anchoring is seen in the elevated interfacial stress at the

bead sites, especially at beads close to the fiber ends, and is also reflected in the overall higher fiber stress compared to

beadless fibers. 

More examples are shown in Fig. 6 , which demonstrates the effect of bead (a) and fiber (b) stiffness in 8-beaded fibers.

As seen, higher bead stiffness increases the shear and fiber stresses, reflecting a better stress transfer from the matrix. The
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Fig. 5. Elastic stresses in beaded fiber composites. The fiber tensile stress σ f and interfacial stress τ f , are depicted versus the relative position along 

the fiber, x / r f , for beaded fibers with for 2, 4 and 6 beads and for beadless fibers (bead-to-matrix tensile moduli ratio E b / E m = 5 and 1, respectively). Both 

stresses are normalized by ɛ 1 E f , where ɛ 1 is the composite strain and E f is the fiber tensile modulus. The fiber volume fraction in the composite is V f = 0 . 3 . 

The beads profile z is shown at the top of each case. The beads relative radius is r b / r f = 2 . 22 , their contact angle with the fiber is θc = 15 ◦ , and their 

relative wavelength is λ/ r f = 13 . 57 . The fiber, bead and matrix tensile moduli are 750 GPa, 8 GPa and 1.6 GPa, respectively, with Poisson ratio 0.33 for both 

bead and matrix . 

Fig. 6. Elastic stresses in beaded fiber composites. For fibers with 8 beads each (only the right half is shown), subjected to composite strain ε 1 = 0 . 01 . 

The parameters in the red curves are as in Fig. 5 , with modulation of (a) the bead relative modulus E b / E m , and (b) the fiber modulus E f . The dotted lines 

are analytic approximations by Eqs. (16) and (17) . 
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composite is elastic, and therefore the stresses are linearly dependent on the composite strain ɛ 1 and can be interpolated or

extrapolated for different strains. In these examples the outermost beads are flush with the fiber ends, but conformations

in which the fiber protrudes further from the outermost beads can also be described, by setting a desired fiber length L (for

example an even multiple of λ) in the boundary conditions. 

The fiber tensile and shear stresses can both be described as a superposition of a reference stress, similar in shape to that

of beadless fibers but of higher magnitude, and a stress perturbation that grows toward the fiber ends and is predominant

at bead sites. Using this approach, approximate analytic expressions can be derived for the stresses. The reference stress, or

zero-order solution (indicated by the subscript 0), is obtained by setting an effective (or mean) constant value of n , denoted

by n̄ , in the differential equation of σ f ( Eq. (11) ) 

d 2 σ f 0 

d x 2 
= 

n̄ 

2 

r 2 
f 

(
σ f 0 − ε 1 E f 

)
(12) 

where n̄ is defined by the mean of n from Eq. (7) 

n̄ = 

1 

λ

∫ λ

0 

ndx ∼= 

1 
2 

(
n f + n b 

)
(13) 

The Plateau-Rayleigh beading generally maintains a constant ratio between the bead diameter and the wavelength

( Greenfeld et al., 2018 ). Consequently, n̄ could be approximated in the above equation by the average between the values of

n at the peak (max radius) of a bead, n b = n (z = r b ) , and at its bottom, n f = n (z = r f ) = n cox . 

The solution of Eq. (12) is of the form σ f = ε 1 E f + A sinh ( ̄n x/ r f ) + B cosh ( ̄n x/ r f ) , where, using the boundary conditions

σ f 0 (−L ) = σ f 0 (L ) = 0 , the constants are A = 0 and B = −ε 1 E f / cosh ( ̄n L/ r f ) , yielding the zero-order fiber tensile stress 

σ f 0 = ε 1 E f 

[
1 − cosh ( ̄n x/ r f ) 

cosh ( ̄n L/ r f ) 

]
(14) 

Substituting in Eq. (8) , the zero-order fiber shear stress is 

τ f 0 = 

1 

2 

n̄ ε 1 E f 
sinh ( ̄n x/ r f ) 

cosh ( ̄n L/ r f ) 
(15) 

Both results resemble those of beadless fibers ( Piggott, 2002 ), except that n cox is replaced by n̄ ( Eq. 13 ). 

More accurate first-order approximations are necessary, especially for the shear stress whose perturbations are large.

The rationale for the following approximations is explained in the Supporting Information. We use the function n 2 / ̄n 2 − 1

to describe the periodic relative deviation of n from its mean value n̄ . The first-order approximation for the shear stress is

given by 

τ f apx 
∼= 

τ f 0 + τ f 0 

(
n 

2 

n̄ 

2 
− 1 

)
∼= 

τ f 0 

n 

2 

n̄ 

2 
(16) 

The term τ f 0 represents the reference shear stress, whereas the term τ f 0 ( n 
2 / ̄n 2 − 1) describes the perturbation. Inte-

grating τ f apx ( Eq. 8 ) from the fiber end toward its center, the first-order approximation for the tensile stress is given by

σ f apx 
∼= 

− 2 

r f 

∫ x 

L 

τ f apx dx ∼= 

σ f 0 −
2 

r f 

∫ x 

L 

τ f 0 

(
n 

2 

n̄ 

2 
− 1 

)
dx (17) 

The term σ f 0 represents the reference tensile stress, whereas the second term describes the perturbation. The maximum

fiber stress at its center is σ f max = σ f apx (0) = σ f 0 (0) . These approximations are depicted in Fig. 6 b (dotted curves) for the

case E f = 750 GPa with n̄ = 0 . 045 , demonstrating excellent fitting accuracy ( R 2 > 0.999, initial guess n̄ = 0 . 046 from Eq. (13) ).

4. Finite element model 

The fiber tensile and interfacial stresses obtained by the model were compared to finite element analysis (FEA) of a

four-beaded fiber embedded in a matrix. The FEA model is described in Fig. 7 , showing the right side of the fiber in an

axisymmetric structure. The FEA adopts the same loading approximation as in Cox model, by applying a uniform composite

strain ε1 at the ring R . Thus, the average effect of the closest neighboring fibers is emulated, and the FEA unit cell is

simplified to a single fiber. The FEA helps validate the stress fluctuations induced by the beads predicted by the elastic

model, as well as the peak stresses. The FEA also yields the stress concentrations and radial and circumferential stresses,

which are absent from the analytic model. 

The elastic model is generally corroborated by the FEA, as demonstrated in Fig. 8 for a four-beaded fiber composite. It is

seen that the analytic calculation of the fiber tensile and shear stresses, σ f and τ f , fits the FEA reasonably well. Similar fit

is seen also for the bead and matrix tensile stresses (presented in Fig. 11 ). These results indicate that, although the elastic

model neglects the radial and circumferential stresses, the tensile and shear stresses are modeled appropriately. Thus, the

stiffness calculations (in Section 5 ) based on these stresses should be valid. The elastic model does not show the stress
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Fig. 7. Finite element model of a beaded fiber composite unit cell. Run on Mecway FEA software. The model is shown before (a) and after (b) loading 

(with displacement magnification x30). The parameters are as in Fig. 5 . The model is 2D axisymmetric around the x axis, showing the right side of a 

four-beaded fiber embedded in a matrix. The structure is constrained in the x direction at x = 0 and in the r direction at r = 0 . The load is applied by 

imposing a uniform strain ε 1 = 0 . 0042 on the matrix external radius R (equivalent to overall elongation of 1 μm). The model dimensions are: r f = 9 μm , 

r b = 20 μm , R = 29 . 1 μm and length 244.2 μm ( V f = 0 . 3 ). 

Fig. 8. Finite element analysis (FEA) of the elastic stresses. The model is described in Fig. 7 . (a) Stress maps in shear ( τ xr ) and tension ( σ x ). (b) The fiber 

interfacial stress τ f and tensile stress σ f , depicted versus the relative position along the fiber, x / r f , compared to the model described by Eq. (11) . 

 

 

concentrations in tension and shear, which appear in the FEA at the fiber end, a known occurrence in fiber composites

( Piggott, 2002 ). To obtain the details of these stress concentrations, the FEA mesh had to be refined in that region to a

resolution of about 0.1 μm per element. 
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5. Composite stiffness 

The higher fiber stress in a beaded fiber composite, as well as the higher bead stiffness (with respect to the matrix),

contribute to higher composite tensile modulus. A transverse cross section through the composite will cut through a large

number of parallel fibers and beads which are arbitrarily dispersed in the longitudinal direction. Thus, the overall longi-

tudinal stress contributed by the fibers is their average stress multiplied by their area fraction (that is, volume fraction).

Similarly, the overall longitudinal stress contributed by the beads will be their average stress multiplied by their volume

fraction. Hence, we can use the following rule of averages to obtain the mean composite stress in the longitudinal direction

(direction 1) 

σ1 = V f σ̄ f + V b ̄σb + V m ̄

σm 

(18) 

where σ̄ denotes average stress and V denotes volume fraction. The fiber volume fraction V f depends on the fibers packing

conformation ( Eq. (1) ), and its maximal value is bounded by the ratio between the bead and fiber radii ( Eq. 2 ). The fiber

average stress is obtained by integrating σ f (solution of Eq. (11) ) from the fiber center to its end 

σ̄ f = 

1 

L 

∫ L 

0 

σ f dx (19) 

Given the beads profile z (the bead local radius) on a fiber of given length, the ratio between the beads and fiber volumes

is known. The bead volume fraction can be calculated by multiplying V f by that ratio: 

V b = V f 

υb 

π r 2 
f 
L 
, where υb = π

∫ L 

0 

(
z 2 − r 2 f 

)
dx (20) 

where υb is the volume of all the beads from the fiber center to its end. To obtain the average bead stress, we integrate

Eq. (4) from r f to an arbitrary radial position r inside the bead 

u r − u f = 

τ f r f ln 

(
r/ r f 

)
G b 

(21) 

Differentiating with respect to x , the longitudinal tensile strain and stress inside the bead are 

ε b = 

σ f 

E f 
+ 

r f ln 

(
r/ r f 

)
G b 

d τ f 

dx 
, σb = ε b E b (22) 

where the following substitutions were made: d u r /dx = ε b and d u f /dx = σ f / E f . The volume of an infinitesimal ring element

drdx (the gray region in Fig. 3 b) is 2 π rdrdx . The bead average stress is calculated by integrating the bead stress in that ring

element throughout the entire volume of beads on a fiber, υb ( Eq. 20 ), from the fiber center to its end 

σ̄b = 

2 π

υb 

∫ L 

0 

∫ z 

r f 

σb r dr dx (23) 

In words, the bead average stress is the summation, over the entire beads volume on half a fiber, of the stress at each vol-

ume element weighted by its volume fraction. Note that although the bead is generally under longitudinal tension ( σ b > 0),

its stress can locally turn negative ( σ b < 0) close to the fiber ends (to be discussed later), and the contribution of such local

compression to the bead average stress would be negative. 

The matrix volume fraction is V m 

= 1 − V f − V b , and its average stress can be calculated in the same manner as for the

bead, except that the integration range in Eq. (4) is from r f to an arbitrary radial position r inside the matrix: 

ε m 

= 

σ f 

E f 
+ 

2 r f 

E f 

d 

dx 

(
τ f 

n 

2 
r 

)
, σm 

= ε m 

E m 

(24) 

where n r = n (R = r) is obtained by replacing R by r in Eq. (6) . The matrix average stress can be calculated by integrating the

stress throughout the matrix entire volume, but, as the matrix strain is on average the same as that of the composite, we

approximate the average stress by σ̄m 

= ε 1 E m 

. In Eqs. (22) and (24) , τ f and d τ f / dx can be exchanged by d σ f / dx and d 2 σ f / dx 2 ,

respectively, obtained from Eq. (8) and its derivative. 

Finally, the composite modulus is 

E 1 = 

σ1 

ε 1 
= 

V f σ̄ f + V b ̄σb + V m ̄

σm 

ε 1 
(25) 

The contributions of the fibers and beads to the modulus of this composite are depicted in Fig. 9 for epoxy reinforced

by glass (a) and carbon (b) fibers. The higher fiber average stress induced by the beads is reflected in the higher fiber con-

tribution (blue curve) compared to beadless reinforcement (dashed curve). This improvement is predominant in shorter

fibers with fewer beads, and is higher for stiffer fibers ( Fig. 9 b). The beads themselves, which are five times stiffer than the
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Fig. 9. Contributions of the fibers and beads to the composite modulus. The composite modulus E 1 , normalized by the fiber modulus E f , is shown in the 

topmost graph ( ) versus the fiber aspect ratio, L / r f . The number of beads per fiber (from 2 to 14) is indicated, and the connecting curves reflect averaging 

of their statistical variation. The lower patterned region indicates the improvement in fiber contribution with respect to a beadless reinforcement. The 

upper patterned region indicates the contribution of the beads themselves. The fiber volume fraction is V f = 0 . 3 . The beads relative radius is r b / r f = 2 . 22 

and their contact angle with the fiber is θc = 15 ◦ . The fibers tensile modulus is 70 GPa (a) and 150 GPa (b), and the beads and matrix tensile moduli are 

8 GPa and 1.6 GPa, respectively, with Poisson ratio 0.33 for both. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

matrix in this example, contribute furthermore to the composite modulus. The upper limit of the composite stiffness is set

by a plain mixture rule 

E 1 max = V f E f + V b E b + V m 

E m 

(26)

indicated in Fig. 9 for compact packing (staggered square packing, Eq. (2) ). The volume fractions of the fibers, beads and

matrix in this example are 0.3, 0.44 and 0.26, respectively. 

The effects of material properties, beads shape and beads frequency on the composite modulus are depicted in Fig. 10 ,

in comparison with the modulus of beadless composites. Generally, the modulus improvement is higher in shorter fibers

and tends to gradually decrease as the fibers get longer and with more beads. It is also seen that the modulus improvement

increases with increasing fiber modulus (a), bead modulus (b), and bead radius (c), and with decreasing contact angle (d).

The bead stiffness is a dominant parameter in that it induces a higher average stress in the fibers, as well as contributes its

own stiffness to the structure. Also dominant is the bead size, although a large bead radius limits the maximum possible

fiber volume fraction. Note that a larger bead radius is coupled with a longer distance between beads ( Fig. 10 c). The effect

of fiber modulus is not considerable, even though the moduli range from 70 GPa (glass fibers) to 750 GPa (high stiffness

carbon fibers). The effect of contact angle is not considerable either, and small angles are favored because they result in

longer beads. 

Using Eq. (25) with the zero-order analytic approximations for the fiber stress σ f 0 ( Eq. 14 ) and the shear stress τ f 0

( Eq. 15 ), the composite stiffness can be assessed by 

E 1 apx 
∼= 

V f E f 

[
1 − tanh ( ̄n L/ r f ) 

n̄ L/ r f 

]
+ V b E b 

[
1 − tanh ( ̄n L/ r f ) 

n̄ L/ r f 
K 

]
+ V m 

E m 

(27)

The factor K is typically between 0 and 1, and is close to 1 for low values of G m 

/ G b . The detailed calculation is presented

in the Supporting Information. When the term n̄ L/ r f >> 1 , this equation converges to the mixture rule of Eq. (26) . The

modulus analytic approximation is depicted in Fig. 10 c (dotted curve) for the case r b / r f = 2 . 2 with n̄ = 0 . 146 , demonstrating

excellent fitting accuracy (initial guess n̄ = 0 . 146 from Eq. (13) ). 

To account for fibers misorientation effects as well as for randomly oriented fibers, Eq. (27) can be rewritten as

E 1 apx 
∼= 

χ1 f χ2 f V f E f + χ1 b χ2 b V b E b + V m 

E m 

, where χ1 f and χ1 b are the fibers and beads orientation factors, and χ2 f and χ2 b

are the factors in brackets in Eq. (27) . The same approach as for beadless fibers ( Piggott, 2002 ) can be applied to beaded

fibers: the composite is envisioned as consisting of an infinite number of hypothetic structural components, each containing

unidirectional beaded fibers with known orientation, and the overall effect is obtained by integrating over all orientations.

The stress fluctuations along beaded fibers average over a large number of fibers in a cross section, and therefore the fibers

orientation factor is likely the same as in beadless fibers. Furthermore, as the beads are oriented together with their hosting

fibers, their misorientation factor should be the same as that of the fibers. Thus, χ1 = χ1 f = χ1 b , where χ1 is the misori-

entation factor of beadless fibers. The value of χ1 is 1 for unidirectional fibers, 3/8 for fibers randomly oriented in two

dimensions (in laminates), and 1/5 for fibers randomly oriented in three dimensions ( Piggott, 2002 ). 
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Fig. 10. Effects of material properties and beads shape on the composite modulus. The composite modulus E 1 , normalized by the modulus of a beadless 

fiber composite, is depicted versus the fiber aspect ratio, L / r f . The number of beads per fiber (from 2 to 14) is indicated, and the connecting curves reflect 

averaging of their statistical variation. The nominal parameters ( ) are as in Fig. 9 a, with modulation of the following parameters: (a) fiber tensile modulus 

E f , (b) bead tensile modulus with respect to matrix E b / E m , (c) bead relative radius r b / r f and corresponding maximal fiber volume fraction V f = V f max ( Eq. (2) ); 

the dotted line is analytic approximation by Eq. (27) , and (d) bead-fiber contact angle θ c . 

 

 

 

 

 

 

 

 

 

6. Interfacial stresses 

The stresses close to the bead-matrix interface determine the stresses acting on the interfacial bonding. The shear stress

close to the bead surface is obtained from Eq. (3) by substituting the local bead radius, r = z: 

τ = 

r f 

z 
τ f (28) 

Similarly, the bead tensile strain and stress close to its surface are obtained from Eq. (22) 

ε b = 

σ f 

E f 
+ 

r f ln 

(
z/ r f 

)
G b 

d τ f 

dx 
, σb = ε b E b (29) 

and the matrix tensile strain and stress close to the bead surface are obtained from Eq. (24) 

ε m 

= ε b −
r f 

G m 

(
1 − G m 

G b 

)
d z/d x 

z 
τ f , σm 

= ε m 

E m 

(30) 

When the bead and matrix are of the same material ( G m 

= G b , E m 

= E b ), the tensile stresses from both sides of the bead

surface are equal ( σm 

= σb ). In the above equations, τ f and d τ f / dx can be exchanged by d σ f / dx and d 2 σ f / dx 2 , respectively,

obtained from Eq. (8) and its derivative. 

The tensile and shear stresses close to the bead surface are depicted in Fig. 11 for epoxy reinforced by high stiffness

carbon fibers (a) and glass fibers (b), and compare well with the FEA. The trends of the tensile stresses are opposite in the

bead and matrix, that is, typically, when one is rising the other is declining. This is particularly visible in the case of the

high stiffness carbon fibers ( Fig. 11 a) in the bead close to the fiber end: on its right side, the bead is under compression

whereas the matrix is under tension; on its left side, the bead is under tension whereas the matrix is under compression. 

In the case of the glass fibers ( Fig. 11 b), the bead stress is much higher than the matrix stress, and the stress rises toward

the fiber center. So, the lower stiffness fiber (glass) elongates more and thus relieves some of the tension in the matrix, but
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Fig. 11. Bead and matrix stresses. The bead and matrix longitudinal tensile stresses, σ b and σ m , and the shear stress, τ , close to the bead surface, are 

depicted versus the relative position along the fiber, x / r f , for fibers with 4 beads each (only the right half is shown). The parameters are as in Fig. 5 . The 

composite strain is ε 1 = 0 . 0042 . The corresponding FEA stress maps of the longitudinal stress, σ x , and von Mises stress, σ vm , are shown below the plots. 

The fiber modulus E f is (a) 750 GPa (high stiffness carbon), and (b) 70 GPa (glass). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

at the same time transfers higher strain and stress to the bead. Note that the bead tensile stress in the gaps between beads

is not zero, as might be expected, because the solution of the model accounts for an infinitesimal layer of bead material on

the fiber ( z → r f ). Such nanoscale layer about 10 0–20 0 nm thick, seen in the magnified inset in Fig. 2 b, was indeed observed

experimentally ( Greenfeld et al., 2018 ). 

The bead-matrix interface includes a thin bonding layer that holds the bead and matrix together. Given the layer stiffness

constants, E bond and G bond , the longitudinal strain in the bonding layer, ɛ bond , is given by Eq. (30) with G m 

replaced by G bond ,

and the longitudinal stress is therefore σbond = ε bond E bond . The shear stress in the bonding layer remains τ (Eq. 28) , as it

does not depend on the layer stiffness. We neglected here the effect of the bonding layer on the model, as the integration

in Eq. (4) should incorporate an additional integration interval across the bonding layer, and would consequently add a term

to n in Eqs. (6) and (7) . However, the bonding layer is infinitesimally thin, and hence this effect is negligible. 

We are interested in the bonding layer in-plane and normal stresses – the tangential (shear) stress τ n and the normal

(tensile) stress σ n , illustrated in Fig. 12 a. Considering a triangular infinitesimal element in the bonding layer ( Fig. 3 b), these

bonding stresses are at equilibrium with the stresses acting in the directions of the main axes, τ and σ bond . The transfor-

mation angle is determined by the bead local slope 

θ = tan 

−1 ( d z/d x ) (31)

positive when the slope is rising and negative when it is declining. Projecting τ and σ bond on the normal and tangential

directions, and balancing the forces in each direction ( Timoshenko and Goodier, 1970 ), we obtain 

σn = σbond sin 

2 θ − τ sin 2 θ

τn = −1 

2 

σbond sin 2 θ + τ
(
cos 2 θ − sin 

2 θ
)

(32)

The radial tensile stress was neglected as the predominant stresses are longitudinal. 

The bead-matrix bonding stresses are depicted in Fig. 12 for two cases of bead stiffness: same stiffness as the matrix

(a), and higher stiffness than the matrix (b). We assume that the bonding layer is part of the matrix, and therefore has the

same elastic properties and longitudinal stress as the matrix ( σbond = σm 

). This assumption is compared to a case where the

bonding layer is five times less stiff than the matrix (thin curves), for example when coating is applied. It is seen that τ n is
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Fig. 12. Bead interfacial bonding stresses. The bead-fiber interfacial stress, τ f , and the bead-matrix normal and tangential interfacial stresses, σ n and 

τ n , are depicted versus the relative position along the fiber, x / r f , for fibers with 4 beads each (only the right half is shown). The elastic properties of the 

bead-matrix bonding layer are (i) same as the matrix ( E bond = E m , thick curves), and (ii) five times weaker than the matrix ( E bond = E m / 5 , thin curves). The 

parameters are as in Fig. 5 except when noted otherwise. The composite strain is ε 1 = 0 . 01 and the fiber modulus E f is 70 GPa (glass). The bead relative 

modulus E b / E m is (a) 1, that is same material as the matrix, and (b) 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

generally lower than τ f or about the same. However, the magnitude of the normal bonding stress σ n is significant, particu-

larly when it acts in tension. So, the bead-matrix bonding interface simultaneously bears both shear and normal tension. By

comparison, the fiber interface does not carry a stress normal to its bonding layer. Note that σ n is fairly insensitive to the

bead stiffness: a change from same stiffness as the matrix ( Fig. 12 a) to five time higher ( Fig. 12 b) has a rather minor effect.

Also, a change from same bonding stiffness as the matrix to five times weaker has a rather minor effect. 

7. Composite strength and failure modes 

The stresses that develop in the fiber, bead, matrix and bonding interfaces, and the corresponding strength of each of

these structural components, determine where failure could initiate and consequently the composite ultimate strength. For

example, as seen in Fig. 12 , the bead-matrix bonding layer bears both shear and tensile stresses, whose combination might

exceed the interfacial strength prior to fiber-bead debonding. The combined effect of the tensile and shear stresses in the

beads and matrix is best described (for ductile materials) by the von Mises stress—see FEA examples at the bottom of Fig. 11 .

The maximum fiber stress occurs at its center ( x = 0 ). Using Eq. (14) , the maximum fiber tensile stress can be approxi-

mated by 

σ f max 
∼= 

σ f 0 (0) ∼= 

ε 1 E f 
[
1 − 1 / cosh ( ̄n L/ r f ) 

]
(33) 

where the effective parameter n̄ is defined by Eq. (13) . 

The bead-fiber interfacial stresses comprise the bead shear and tensile stresses at the boundary layer. The maximum

bead shear stress has a peak that nearly coincides with the highest point of the bead closest to the fiber end ( Fig. 6 ), at

longitudinal position 

x b ∼= 

( N − 1 ) 
λ

2 

(34) 

where N is the number of beads on the fiber. Using Eq. (16) , the maximum bead shear stress at the boundary layer can be

approximated by 
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τb max 
∼= 

τ f apx ( x b ) ∼= 

1 

2 

n̄ ε 1 E f 
sinh ( ̄n x b / r f ) 

cosh ( ̄n L/ r f ) 

n 

2 
b 

n̄ 

2 
(35)

where n b = n ( x b ) is the value of n at the bead peak (max radius, z = r b ). At that location, the tensile stress in the bead is

approximated by combining Eqs. (14) and (22) with r = r f 

σb 
∼= 

σ f 0 ( x b ) 
E b 
E f 

∼= 

ε 1 E b 

[
1 − cosh ( ̄n x b / r f ) 

cosh ( ̄n L/ r f ) 

]
(36)

To evaluate the combined bead-fiber bonding stress that may lead to failure, we calculate the maximum von Mises stress

at that interface 

σb vm 

∼= 

√ 

σ 2 
b 

+ 3 τ 2 
b max 

(37)

The contribution of the tensile component σ b is relatively small because it tends to zero toward the fiber end. 

The matrix-bead interfacial stresses comprise the matrix shear and tensile stresses at the boundary layer. The maximum

matrix shear stress at the boundary layer ( Eqs. (16) and (28) , Fig. 11 ) occurs at the fiber end, where x = L and z = r f 

τm max 
∼= 

τ f apx (L ) ∼= 

1 

2 

n̄ ε 1 E f tanh ( ̄n L/ r f ) 
n 

2 
f 

n̄ 

2 
(38)

where n f = n (L ) is the value of n at the fiber end ( z = r f ). The corresponding tensile stress at that location is approximated

by Eq. (30) with σ f = 0 , z = r f and ˙ z = − tan ( θc ) 

σm 

∼= 

k τm max , k = 2 ( 1 + νm 

) 

(
1 − G m 

G b 

)
tan ( θc ) (39)

where E m 

/ G m 

= 2( 1 + νm 

) and νm 

is the matrix Poisson’s ratio. To evaluate the combined matrix-bead bonding stress that

may lead to failure, the maximum von Mises stress at that interface is 

σm vm 

= 

√ 

σ 2 
m 

+ 3 τ 2 
m max 

∼= 

τm max 

√ 

k 2 + 3 (40)

The actual maximum may occur slightly before the fiber end (see Figs. 11 and 12 ), but for simplicity we assumed it is at

the fiber end. The contribution of the tensile component σ m 

is relatively small because typically k < 1. 

We see that the critical debonding point in the bead-fiber interface is at the center of the bead closest to the fiber end,

whereas in the matrix-bead interface it is at the bead far edge (at the fiber end). Such behavior was indeed observed in

pullout and fragmentation tests of beaded fibers ( Greenfeld et al., 2018 ). Given the bead-fiber and matrix-bead bonding

strengths, σ bu and σ mu , respectively, the following criterion may be defined 

C i = 

σmu / σm vm 

σbu / σb vm 

∼= 

σmu 

σbu 

√ 

σ 2 
b 

+ 3 τ 2 
b max √ 

σ 2 
m 

+ 3 τ 2 
m max 

∼= 

σmu 

σbu 

τ
b max 

τm max 

(41)

When C i > 1 the failure will start at the bead-fiber interface, whereas when C i < 1 it will start at the matrix-bead inter-

face. Intentional tuning of σ bu and σ mu can be applied to achieve a desirable failure mode (see example in Fig. 13 ). 

A similar criterion can be defined to determine whether the fiber will break prior to the weakest interface. For example,

if the bead-fiber interface is the weakest interface, the criterion is 

C f = 

σ f u / σ f max 

σbu / σb vm 

∼= 

σ f u 

σbu 

√ 

σ 2 
b 

+ 3 τ 2 
b max 

σ f max 

∼= 

σ f u 

σbu 

√ 

3 τ
b max 

σ f max 

(42)

When C f > 1 the failure will start at the interface, whereas when C f < 1 the fiber will break first. As with beadless fibers,

the elastic stress analysis typically results in C f > > 1, so that when interfacial loosening starts, the fiber stress is still sig-

nificantly below its strength. However, plastic deformation of the matrix during failure can increase the fiber stress to a

breaking point if its number of beads is larger than the critical number of beads (equivalent to the concept of critical length

in beadless fibers) ( Greenfeld et al., 2018 ). 

The ultimate stresses identified in this section are calculated under the shear-lag modeling assumption that the compos-

ite stress and strain are averaged over a cross section through a large number of fibers. However, local stress concentrations

in the bead, matrix and fiber induced by nearby fibers may change these ultimate stresses. Analysis of such inter-fiber

load transfers, based on models developed by ( Eitan and Wagner, 1991; Wagner and Eitan, 1993 ) and further elaborated by

( Grubb et al., 1995 ), is provided in the Supporting Information. The main conclusion from this analysis is that, when con-

sidering multiple nearby fibers, each with a different staggering offset (fixed or random) with respect to the affected fiber,

such stress concentrations are smoothened, consistent with the shear-lag averaging approximation. 

As suggested, the failure mode can be tuned by selection of material and interfacial properties. One way to accomplish

this is to modify the matrix-bead interfacial strength by applying coating on the beaded fibers prior to their embedding

in the matrix. For example, if a release agent is applied (increasing σ bu / σ mu in Fig. 13 ), the matrix-bead interface will be

weakened and will likely debond first. However, in contrast to the catastrophic failure that happens upon fiber interfacial
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Fig. 13. Effect of interfacial tuning on failure mode. Regions of interfacial failure mode mapped on the parametric space of the bead radius and the 

number of beads. The curves are given by C i = 1 ( Eq. (41) ) for 3 values of the bead-fiber and matrix-bead relative interfacial strength, σ bu / σ mu . Above each 

curve a bead-fiber interfacial failure is expected, whereas below it a matrix-bead interfacial failure is expected. The other parameters are as in Fig. 5 . The 

maximal fiber volume fraction is taken for each case (Eq. 2) . 

Fig. 14. Failure of a beaded fiber composite. Single beaded glass fiber embedded in epoxy matrix, subjected to gradually increasing longitudinal stress. 

(a) Birefringence image of the stress on beads; fiber breaks are indicated by arrows. (b) Plastic deformation of the matrix under beads pressure, subsequent 

to bead-matrix debonding. (c) Pullout of beaded fiber. (d) Pullout of fiber from its beads. 

 

 

 

 

 

 

 

 

 

 

 

 

debonding, in the case of matrix-bead debonding the fiber remains anchored in the matrix (that is, topologically locked).

Furthermore, the pressure induced by the matrix on the bead slope generates radial inward pressure in the bead, enhancing

the bead grip on the fiber. If the fiber strength is exceeded, the fiber will break and the beads will push against the matrix

causing plastic deformation. Eventually, a crack will propagate through the matrix, and fiber sections with or without beads

will pull out from the matrix. This train of events, observed experimentally ( Fig. 14 ) for same bead and matrix material, has

the potential to improve toughness without harming strength ( Greenfeld et al., 2018 ). 

8. Conclusions 

The complex structure of a beaded fiber composite and the motivation for its use are described in this study, with focus

on the elastic stress profiles that develop under load and the composite stiffness. The proposed model extends the classic

Cox shear lag theory of fiber composites to beaded fiber composites, and is substantiated by finite element analysis. The

addition of beads on fibers, and the new bead-matrix interface, significantly increase the model level of complexity. The

resulting stresses incur periodic perturbations induced by the beads, expressed by the classic Hill’s differential equation. 

As in the shear lag model for beadless fibers, the current model is approximate, as it assumes perfect 2D axisymmetry,

neglects the radial and circumferential stresses, and does not predict stress concentrations at the fiber ends. Yet, these

approximations should not impact the prediction of the composite stiffness, and the model remains an excellent tool for



I. Greenfeld, C.W. Rodricks and X. Sui et al. / Journal of the Mechanics and Physics of Solids 125 (2019) 384–400 399 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

understanding the elastic behavior of this structure. Future work may extend this study to larger scale finite element models

and to plastic and fracture behavior under ultimate loads. 

The model shows that, if the beads are stiffer than the matrix, the stress transfer from the matrix to the fiber is more

efficient than in beadless fibers due to an anchoring effect. This is evidenced through the elevated interfacial stress at bead

locations and the higher fiber stress. Consequently, the composite stiffness is raised, particularly for higher bead stiffness

and larger beads. Conversely, if the beads are less stiff than the matrix, the composite can be made more compliant and

possibly more ductile. 

The composite strength is dominated by the weakest link in the structure, whether fiber, bead, matrix or any of their in-

terfaces, and the fracture mechanisms may include interfacial debondings, fiber pullouts, bead pullouts and fiber breaks. The

strength of the bonding layer between the bead and matrix can be tuned by coating, allowing it to debond first but without

losing anchoring. The ensuing compressive plastic deformation of the matrix by the beads likely improves the composite

toughness without harming its strength. Further experimental and theoretical research is anticipated in characterizing the

failure modes of beaded fiber composites, and their impact on the composite strength and toughness. 
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