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5.1 Introduction
Electrospinning is an extensional flow characterized by high strain rates of
order 103 s�1.1–7 Such stretching can potentially improve the structural order
within as-spun nanofibers and enhance their mechanical properties such as
elastic modulus and strength.8–14 At the same time, rapid solvent evapor-
ation during electrospinning can lead to increased polymer concentrations
at the jet boundary,15–18 sometimes forming a solid skin and a hetero-
geneous, porous structure.11,17,19 Hence, study of electrospinning polymer
solution jets, particularly of the evolution of the polymer entangled network
during electrospinning,11 is of interest in clarifying the microstructure of as-
spun nanofibers.

Theoretical modeling of the polymer network dynamics during electro-
spinning, combined with random walk simulations of polymer chain con-
formations, showed substantial network stretching that occurs during the
initial stage of electrospinning, several millimeters from the jet start.11 That
stretching is accompanied by lateral contraction of the network, resulting in
a dense and compact polymer matrix at the jet core, verified by fast X-ray
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phase-contrast imaging of electrospinning jets.20 Furthermore, scanning
near-field optical microscopy (SNOM) of fully solidified electrospun nano-
fibers confirmed that the fiber core has a higher density than its boundary,
as well as a preferred molecular orientation in the direction of the fiber
axis.21

The adaptation and application of polymer random walk simulation to an
extensional flow, specifically to electrospinning of semi-dilute polymer so-
lutions, provides a powerful tool for the analysis of the polymer network
dynamics under various flow conditions and polymer conformations. In the
following text, the random walk concept is explained, its theoretical basis
and simulation tool are described, two types of single chain extension are
demonstrated (chain under tension and chain in a flow field), and finally the
polymer network dynamics in a flow field is simulated and discussed.22

Experimental evidence supporting the simulation results is briefly
presented.

5.2 Random Walk Simulation of Polymer Chains

5.2.1 Background

A flexible polymer chain in equilibrium state, having a degree of polymer-
ization N, can be described by N successive steps of fixed length a, where a
step represents a single monomer (or Kuhn segment). Each step is in-
dependent and has the same probability to move in any of the six Cartesian
directions. Such a chain is called a freely-jointed chain, meaning that above
the scale of a Kuhn segment the correlation between adjacent segments is
lost (i.e., restrictions due to bond angles and steric hindrance occur only
below that scale), and the segments are free to move in any direction.
Random walk on a Cartesian lattice can describe each possible chain con-
formation of a freely-jointed long chain. The three-dimensional end-to-end
distance ~R of such a free ideal chain has a Gaussian distribution:23

Pð~R;NÞ¼ 3
2pR2

0

� �3=2

exp � 3~R2

2R2
0

� �
where R2

0¼ a2N: (5:1)

The distribution of each Cartesian component of ~R is normal, with mean
at zero. The probability that the end-to-end distance R¼ j ~R j will be within a
spherical shell of radius R and thickness dR is23

PðR;NÞ4pR2dR¼ 3
2pR2

0

� �3=2

exp � 3R2

2R2
0

� �
4pR2dR: (5:2)

Examples of free chain simulations are shown in Figures 5.1 and 5.2.
A RW (random walk) simulation consists of generating a large enough

sample of individual walks, each constructed from N successive unit-steps,
and then generating a distribution of a chosen parameter (end-to-end
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distance, segmental orientation, etc.) from the complete sample, and finding
the statistical moments and other characteristic features of the distribution.

Random walk simulation of a polymer chain or a network in a solution can
be an effective tool for describing the polymer conformation, especially
when the theoretical solution is too complex, when visualization of the be-
havior of an individual chain is desired, or when applying complex boundary
constraints and potential fields (e.g., a non-uniform flow). Under the effects
of boundary or strong extensional flow, the statistical conformation of

Figure 5.1 Example of random walk simulation of a single free flexible chain on a
Cartesian lattice, with N¼ 2000 monomers (rigid chain elements).
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polymer chains is not Gaussian. The RW simulation tool presented here was
developed and used extensively to investigate the conformation of the
polymer chains and network during electrospinning, under varying process
variables such as molar mass, flow strain rate, and solution viscosity.11,22

Although RW is efficient in providing the complete conformational stat-
istics of a chain, the applicability of the method requires some simplifying
assumptions on chain type, walk type, and monomers connectivity. The RW
model used here is non self-avoiding, meaning that monomers in the chain
are allowed to overlap (i.e., occupy the same lattice position). The simulated
chains are therefore ideal and not real, resulting in tighter chain conform-
ations. However, this difference is of second order compared to the effects of
external forces on the conformation. Moreover, for the concentrated solu-
tions used in electrospinning, an ideal chain model is a good estimate, since
in dense systems the repulsive forces between distant monomers in a chain
are screened by repulsive forces from neighboring monomers of other
chains.23,24

An important concern is whether random walk adequately represents the
monomers connectivity in a chain under tension. Each random walk step is
completely independent of the preceding and succeeding steps, and there-
fore can be described as a Brownian motion of a single particle. However,
under external forces, free Brownian motion is not applicable, since
monomers apply tension forces on their linked neighbors, and therefore
their motion is not independent. The approach used here is to define an
effective potential field that represents the external forces, similar to the

Figure 5.2 Example of random walk simulation of 100 free flexible chains on a
Cartesian lattice. All of the chains start from the same point, and each
chain contains N ¼ 2000 monomers.
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potential arising from hydrodynamic friction suggested by Kramers,25 and to
calculate the RW stepping probabilities from the potential gradient. This
approach is shown to be valid in Section 5.3.1.

5.2.2 Theoretical Basis

A monomer in a linear chain or chain section, in the presence of an effective
potential field U, experiences a force F¼�rU, where rU is the potential
gradient. This effective potential may arise from an external force acting at
the chain ends, which propagates evenly along the chain, or from a local
force acting directly on monomers such as a hydrodynamic force, or from a
combination of both force types (Figure 5.3).

From statistical mechanics it is known that, if a system in equilibrium can
be in any one of several states, the probability that the system will be in a
state having a potential U is e�U/(kBT)/Q, where T is the temperature and kB is
the Boltzmann constant.26 The partition function Q is determined so that
the sum of the probabilities of all the possible states equals 1. In terms of a
RW on a Cartesian lattice, the probability Px

� , that the system will make a
step a in any of the 6 possible directions, is defined as Px

� � Px
� (x - x� a),

where x¼ z, r, j are the three Cartesian axes. Therefore

P�x ¼
1
Q

exp �Ux� a � Ux

kBT

� �
¼ 1

Q
exp � rUxa

kBT

� �
; (5:3)

where rUx is the potential gradient in the direction x. In correspondence to
an electrospinning jet, z is coincident with the jet main axis, while r and j
are two radial mutually perpendicular axes. The sum of the probabilities of
the 6 possible states of the system should be a unity

X
x

Px
� ¼

X
x

ðPþx þ P�x Þ¼
2
Q

X
x

cosh
rUxa
kBT

� �
¼ 1; (5:4)

from which Q can be derived. Defining a normalized force (using F¼�rU)

f ¼ Fa
kBT
¼�rUa

kBT
; (5:5)

R

a

endF

fieldF

Figure 5.3 The general case of forces acting on a chain or a chain section. An
external force Fend acts at the chain end and, in addition, a potential field
applies a force Ffield on each monomer a.
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and substituting into eqn (5.3), we obtain the probabilities for a random
walk step under a force f 11

P�x ðz; r;jÞ¼
exp ½ � fxðz; r;jÞ�

2
P

x cosh½fxðz; r;jÞ�
; x¼ z; r;j: (5:6)

Since the potential is a function of the three-dimensional position (z, r, j),
the force acting on a monomer, and its related stepping probabilities, are
written as functions of the position.

The three force functions, (fz, fr, fj), can be any functions of the 3D pos-
ition of the current monomer (z, r, j). For example, using quadratic func-
tions of the position, the force functions could be

fzðzÞ¼ Az;0 þ Az;1z þ Az;2z2

frðr; zÞ¼ Ar;0 þ Ar;1rþ Ar;2rz

fjðj; zÞ¼ Aj;0 þ Aj;1jþ Aj;2jz;

(5:7)

where Ax,i are constants. These functions are suitable (with adjustments) for
describing the cases of interest, particularly the force field of the electro-
spinning jet (Section 5.4), in which the corresponding constants of the
functions fr and fj are equal. The constants Ax,0 represent forces acting at the
chain ends, whereas the other terms represent a force field which varies as a
function of the monomer position. The field force in the positive direction of
z grows quadratically with z, while the radial field forces, which are acting
toward the jet center, grow linearly with z and diminish toward the jet center.
Consequently, all the constants should be positive, except for the prefactors
of r and j, which should be negative.

The random walk 3D simulation based on this concept was implemented
in a computer program described in Section 5.6.1.

5.3 Single Chain

5.3.1 Chain under Tension

The modeling of this case is strongly related to the dynamics of the polymer
network during electrospinning since, as will be explained in Section 5.4 of
this chapter, the dominant force acting on a subchain entangled in a net-
work is the extension force exerted at its ends by the linked subchains.

A longitudinal (normalized) force fz, acting at the chain ends, propagates
from one monomer to another, so that the force on each monomer is equal
to fz. Since the transversal forces fr and fj are zero, the probability that the
monomer will step in the longitudinal positive and negative directions is
[eqn (5.6)]

P�z ¼
exp ð� fzÞ

2½cosh fz þ 2� : (5:8)
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Similarly, the probability to step in one of the transversal positive and
negative directions is

P�r ¼ P�j ¼
1

2½cosh fz þ 2� : (5:9)

Since in this case the stepping probabilities are the same for all the N
monomers in the chain, it is possible to derive an analytical solution for the
chain mean end-to-end distance, R, that results from the end force

Rx¼Rmax(Px
1� Px

�), x¼ z, r, j, (5.10)

where Rmax¼ aN. Substituting the stepping probabilities from eqn (5.8) and
(5.9), the mean longitudinal distance is

Rz

Rmax
¼ sinhðfzÞ

coshðfzÞ þ 2
; (5:11)

while the transversal distances are Rr¼Rj ¼ 0.
An example of a RW simulation of the extension of a freely-jointed chain

under several values of the end force is shown in Figure 5.4. The force-
elongation relationship of a freely-jointed chain, obtained by the RW
simulation, is shown in Figure 5.5, and is compared with the Gaussian
[Rz/Rmax¼ fz/3],24 Langevin [Rz/Rmax¼ [coth(fz) � 1/fz]],

23 and Analytic [eqn
(5.11)] solutions. The Gaussian solution represents Hooke’s law, and is valid
only for small elongations, whereas the Langevin and RW solutions, both
saturate at elongations approaching the extension limit of the chain.

Figure 5.4 Random walk simulation of a freely-jointed chain with N¼ 10 000
monomers. The stretching end force, fz, is (from left) 0 (free state),
0.05, and 0.3.
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The redistribution of stepping probabilities during application of a lon-
gitudinal extension (see example in Figure 5.20), results in lateral con-
traction of the chain, as seen in the narrowing of the distribution of the
chain mean-square end-to-end radial distance in Figure 5.6 when the ten-
sion force is increased. The mean-square radial distance is calculated from
the simulated distribution [the function R(I, N) in Figure 5.22], and is nor-
malized by the mean-square end-to-end distance of a free chain, R0¼ aN1/2.

Rr

R0
¼ j Rr j

N1=2
: (5:12)

Figure 5.5 Force-elongation relationship of a freely-jointed chain. Comparison of
the mean elongation of random walk (RW) simulation of 10 chains, each
with N ¼ 30, to Langevin, Gaussian, and Analytic solutions.
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 2
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Figure 5.6 Probability density of the radial mean-square end-to-end distances, for
three values of the stretching end force fz (from left): 4, 2, and 0. I ¼ 1000
simulated chains, each with N ¼ 500 monomers.
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Also, as a result of stretching, the alignment of chain segments with re-
spect to the z axis increases. The orientation parameter O is averaged over
the complete contour length of the chain

O¼ 3
2
hcos2 yi � 1

2
; hcos2 yi¼ 1

N � 2mþ 1

XN�m

n¼m

j znþm � zn�m j
j ~Rnþm �~Rn�m j

� �2

; (5:13)

where y is the angle between the segment’s end-to-end direction and the z
axis, and 2m þ 1 is the number of monomers in the segment. The result is
then averaged over a sample of chains to reduce noise. As expected, the
orientation increases when the force is higher (Figure 5.7). Obviously,
the orientation depends on the size of the selected segment: when too
short, the Cartesian lattice can introduce an error, whereas, when too long,
the orientation gradually drops to 0.

5.3.2 Free Chain in a Flow Field

A single chain in a flow field is not representative of the dynamic behavior of
a polymer network during electrospinning. However, this problem was in-
vestigated analytically by de Gennes24,27 and others, and therefore it is
interesting to study it with a different tool. Moreover, the extension of the
chain in this case is not uniform, unlike the case of a chain under tension at
its ends (described in the previous section), but varies along its contour,
somewhat analogous to the conformation of a polymer network along an
electrospinning jet.

A single chain in an extensional flow field experiences field forces acting
directly on its monomers. The force on a single monomer of size a can be
estimated by Stokes law

F¼ kGaZsv, (5.14)

where Zs is the solvent viscosity, v is the velocity difference between the
monomer and the solvent, and kG is a dimensionless geometrical factor of

0 50 100 150 200

0

0.5

1

Monomers in segment, 2m+1

O
rie

nt
at

io
n 

pa
ra

m
et

er
, O

Figure 5.7 Segmental orientation as a function of the number of monomers in a
segment, for three values of the stretching end force fz (from top): 2, 0.5,
and 0.2. The number of monomers in a chain is N ¼ 1000.
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order 1 that depends on the monomer’s shape. Assuming that the center of
the sum of forces is moving at the velocity of the jet, the origin of a Cartesian
coordinate system x¼ (z, r, j) can be attached to the force center, with z
pointing toward the direction of the flow. Within the small scale of a single
chain, the velocity gradient can be considered constant, and therefore the
force center is located approximately at the chain center; however, this
condition is not necessary, so long as the location of the force center on the
chain is known. The velocity v is then the jet velocity with respect to
the moving force center. Writing the velocity in units of step per s instead of
nm s�1 (in common polymers 1 step has the scale of 1 nm), and normalizing
the force as in eqn (5.5)

f ¼ Fa
kBT

D
kGa3Zs

kBT
vD t0v; (5:15)

where t0 E Zsa3/(kBT) is the monomer’s relaxation time.23

In the case of a constant velocity gradient s in the z direction (remem-
bering that z is referenced to the force center), and no gradient in the per-
pendicular directions

fz D st0z. (5.16)

The dimensionless parameter st0 is the force field coefficient Az,1, used in the
force functions of eqn (5.7). Due to symmetry with respect to the chain
center, which coincides in this case with the force center, the random walk is
run for half the chain. Note that the force can be rewritten in the form
fz � st�z=N, where t E t0N3/2 is the chain relaxation time,23 and �z¼ðz=N1=2Þ
is the relative position. This form incorporates the familiar st term, used by
de Gennes to express the condition for coil stretch transition.24

The results of the corresponding RW simulation provide a striking re-
semblance to the analytic solution by de Gennes. The distribution P(R/R0) of
the chain’s end-to-end distance R¼ j ~R j in Figure 5.8 shows that, when
gradually increasing st0, the end-to-end distance of the chain transitions
from small elongation to very large elongation, with an intermediate widely
spread bimodal distribution (inset). The entropy of the chain is given by
S¼ kBln(O)¼ const þ kBln[P(r)], where P(r) is the probability of the extension
r, and O is the number of possible coil configurations for a given extension
vector r, proportional to P(r). The total Helmholtz free energy (elastic þ
friction) of the chain is calculated by Ftot¼U � TS, where U is the chain
constant internal energy, independent of chain conformation because
an ideal chain assumes no interaction energy between distant
monomers. Thus,

Ftot

kBT
¼ const � ln

PðR=R0Þ
4pðR=R0Þ2

" #
; (5:17)

where the term 4p(R/R0)2 is inserted in order to convert the distribution from
the 1D form of eqn (5.2) to the 3D form of eqn (5.1). The energy is depicted in
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Figure 5.9, in excellent agreement with de Gennes.24 Below a critical gradient
sc, the elongation is Gaussian, while above it the curve corresponds to large
elongation and has two energy minima, eventually converging to very large
elongation.

The value of the critical gradient sc, where coil stretch transition occurs, is
seen in Figure 5.10 for three values of the degree of polymerization N. This
plot was achieved by calculating the elongation distribution for each value of
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)

 R / R0

N 0.5

Figure 5.8 Probability density of relative end-to-end distances R/R0 of a polymer coil
in an extensional flow with a constant gradient. I ¼ 1000 simulated
chains, each with N ¼ 1000 monomers. The field force is st0z, where st0
is (from left): 0, 0.003, 0.006, 0.012, and 0.063. The inset (st0 ¼ 0.012)
shows a transitional bimodal density.
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Figure 5.9 Free energy versus the relative elongation of chains under a field force
st0z in an extensional flow with a constant gradient. Calculated for three
values of st0 (from left): 0.01, 0.02, and 0.03. N ¼ 1000 monomers.
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st0, and detecting the peaks of the probability density, from which the
statistical mode (most frequent value) of the elongation is inferred.

Below the transition point, the dependence of the elongation on s is low
(Gaussian), whereas above it the dependence is initially steep and then, at
very high gradients, it tapers off. Around the transition point, within a very
small st0 range (e.g., 0.013–0.014 for the case N¼ 1000), the elongation fluc-
tuates between small and large values (inset). Additionally, when the chain is
longer (higher N), the hydrodynamic friction becomes dominant over the
elastic force, and the transition point occurs at a lower s, as shown by de
Gennes. For N¼ 5000 monomers, the transition occurs at a very low gradient.

The conformation of a chain extended by such a force field is different
from a chain under tension at its ends, described in the previous section.
While a chain under tension has a uniform density along its contour (top
view of Figure 5.11), a chain in a force field is denser around its center, where
the force is low, and more extended farther from the center, where the force
is high (bottom view).

5.4 Network in a Flow Field

5.4.1 Polymer System and Forces

Polymer in a semi-dilute solution forms an entangled network. In such a
network, each chain segment between two adjacent topological links (i.e.,
topological constraints), can be practically regarded as a subchain, with an
end-to-end distance x, equivalent to the network mesh size (see illustration
in Figure 5.12). When the jet strain rate is low, rapid relaxation of polymer

Figure 5.10 The distribution mode of the relative elongation R/Rmax of a single
polymer coil in an extensional flow with a constant gradient, versus the
normalized flow gradient st0. The field force is st0 z. The value of N is
(from left): 5000, 1000, and 500 monomers. The inset magnifies the
transitional zone of the case N ¼ 1000.
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Figure 5.11 Examples of extended chains with N ¼ 1000. The top view is a chain
under tension at its ends. The bottom view is a chain under a force
field, such as a flow with a constant strain rate in the direction of the
chain’s elongation.

Figure 5.12 Illustration of polymer network stretching in an electrospinning jet,
and definition of an effective 1D system describing the polymer
network stretching in the axial direction z (left) and the radial
direction r (right). rJ and rP denote the jet and polymer network radii,
respectively.
Adapted from ref. 11.
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chains results in a viscous flow; however, at high strain rates, relaxation is
not sufficiently fast and elasticity is dominant, making the elastic extension
of subchains possible. When subchains approach full extension, they will
tend to disentangle from the network, an effect ignored in the analysis
presented here (entanglement loss is addressed in ref. 28).

Each subchain experiences an extensional force at its ends, exerted by the
other subchains connected to the same topological links, and a local
hydrodynamic force acting on each of the subchain’s monomers by the
solvent (Figure 5.13). Since the scale of a single subchain (B10 nm) is several
orders of magnitude smaller than the scale of the electrospinning jet
(B1 mm), the tension gradually builds up from subchain to subchain due to
network connectivity, and becomes dominant over the hydrodynamic force.
The subchain can therefore be treated as a single chain under tension, as in
Section 5.3.

Subchains in a network at rest have an end-to-end distance x0, caused by
an effective stretching force [normalized as in eqn (5.5)] of scale11

f0¼ tanh�1 3a
x0

� �
� 3a

x0
� 3ffiffiffiffiffiffi

Ns
p ; (5:18)

using the Gaussian force-elongation relationship f0¼ 3R0/Rmax,23 where
R0¼ x0¼ aNs

1/2, Rmax¼ aNs, and Ns is the number of monomers in the sub-
chain. The first term was obtained from eqn (5.28) at jet start. For a given
polymer volume concentration f, x0 D af�1 and Ns D f�2 (ideal chain).

The force on a monomer in a flow field is F¼ kGaZv [eqn (5.14)], where
Z (Z4Zs) is the effective viscosity of the dilute solution surrounding the
monomer. In this, we assume that, although the solution as a whole is semi-
dilute entangled, locally, the fluid around the monomer has a higher vis-
cosity than that of the solvent, as a result of dissolved unentangled chains.
Given a velocity gradient in the vicinity of a subchain n, rvn, and the sub-
chain end-to-end distance xn, the average velocity increase along that

nξ

f
−n

n

1−n
nξ

n
1nf

b

hyd
nf

entanglement

Figure 5.13 Tension forces and hydrodynamic forces acting on a subchain ex-
tending between two entanglements in a polymer network.
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subchain is xnrvn. Consequently, the hydrodynamic force grows with respect
to the previous subchain, and the force on a monomer in that subchain is
increased by11

dFn D kGaZxnrvn. (5.19)

This force is on average the same for all the monomers in the
subchain, and is therefore equivalent to a tension force of the same
scale applied at the subchain ends, as reasoned in Section 5.3. Writing the
mesh size in unit steps instead of nm (1 step is B1 nm), and normalizing
the force

dfn¼
dFna
kBT

D
kGa3Z
kBT

xnrvn D t0xnrvn; (5:20)

where t0 E Za3/(kBT) is the monomer’s relaxation time corresponding to
the dilute viscosity Z. Summing the friction forces over all the subchains
in a desired direction, we obtain the total tension force acting on
subchain n

fn¼
Xn

i¼ 1

dfi D t0

Xn

i¼ 1

ðxirviÞD t0ðvn � vn0Þ; (5:21)

where vn is the flow velocity around subchain n, and vn0 is the flow velocity at
the origin of the first subchain, both in units of step per s. In view of the
huge difference in scale between a subchain and the network, fn and vn can
be written as continuous functions of the global position x¼ (z, r, j), or f(z,
r, j) and v(z, r, j), in which the position corresponds to the subchain se-
quential number. Thus,

fx E t0(vx � vx0), (5.22)

where vx and vx0 are the velocity and the initial velocity in the direction x,
respectively. Adding the initial force of the network at rest from eqn (5.18),
we obtain the total force on a monomer

fx E f0 þ t0(vx � vx0). (5.23)

The flow of the electrospinning jet has axial and radial velocity com-
ponents. For a quadratic velocity profile, we use the form11,29

vz ¼ v0ð1þ kzÞ2
vr¼� v0ð1þ kzÞkr; (5:24)

where v0 is the jet initial velocity, k is a dimensionless parameter that de-
termines the velocity gradient (of order 10�6–10�4), and the units of length
and velocity are step and step per s, respectively. k depends on the process
and material parameters, such as the jet initial velocity and radius, elec-
trostatic field intensity, solution viscosity, and electric conductivity.28,29 The
corresponding jet radius (assuming volume conservation) is rJ¼ r0(1þ kz)�1,
where r0 is the jet initial radius. The initial velocity in the axial direction is
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taken at the jet start (z¼ 0), whereas the initial velocity in the radial direction
is taken on the free surface of the jet (r¼ rJ), and therefore

vz0¼ v0

vr0¼� v0kr0:
(5:25)

Inserting the velocity expressions into eqn (5.23), we can now summarize
the force functions for the random walk simulation (in unit steps) of an
entangled subchain in a flow field, in a form similar to eqn (5.7):

fz¼ f0 þ t0v0kð2þ kzÞz
fr¼ f0 � t0v0k½r0 � ð1þ kzÞr�
¼ f0 � t0v0kr0ð1� r=rJÞ:

(5:26)

The forces in eqn (5.26) are specific to the quadratic velocity profile of eqn
(5.24), but eqn (5.23) can be adapted to any velocity profile by the same logic.
In view of the rotational symmetry in the radial direction, the same value of
the force fr is used for the force fj, an approximation that reduces the
complexity of the simulation. Note that in the radial direction, the sign of the
velocity was reversed since the network starts at the jet boundary and not at
the center, and consequently, since r orJ, the force due to the radial flow is
negative (a compressive force). Also, the overall radial force should always be
fr Z0, since a negative value would mean stretching.

In the axial direction, the stretching force due to the flow rises quad-
ratically with z and becomes much larger than f0, and therefore fz D t0v0k2z2.
In the radial direction, the compression force due to the flow decreases
proportionally to the ratio between the local radius and the jet radius, and
reaches a maximum magnitude of t0v0kr0 at the jet center, independently of
the position z. Typically, the order of magnitude of this compressive force is
much lower than f0 B 10�1, and therefore it does not cause a significant
compression with respect to the initial mesh size of the network. Hence, the
dominant effect on the radial contraction of the network is that induced by
the axial stretching force, which is many orders of magnitude higher than
the radial compressive force (their ratio is of order z/rJc1). These effects are
demonstrated in the simulation example shown in Figure 5.14. In fact, the
influence of the radial compressive force is even lower, since the network
radius becomes smaller than the jet radius as a result of stretching, and
therefore the jet radius rJ in eqn (5.26) should be replaced by the smaller
network radius rP.

5.4.2 Network Dynamics

The network simulation procedure is described in Section 5.6.2. Typical
results of a simulation run of a sequence of B9000 subchains in the axial
direction are depicted in Figure 5.15, showing the evolution of the axial force
and the axial and radial mesh sizes, as functions of the distance from the jet
start. In this run, the radial compression force was ignored (fr¼ f0), allowing
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observation of the net effect of stretching on the radial mesh size, which in-
deed converges to zero around 106 steps from the jet start (B1 mm). At that
position, the axial mesh size converges to the fully extended length of the
subchain, and the axial force rises to B70f0. The parameter t0 was tuned so
that at small elongations the axial mesh size will conform to that obtained by
the affine stretching result of the theoretical modeling, represented by the
dotted line.11 Note that, unlike the theoretical model, which assumes linear

Figure 5.14 Example of subchains conformation generated by random walk, dem-
onstrating the dominant effect of stretching over radial contraction.
Each image consists of a sample of 100 subchains, starting from the
same node. Ns¼ 4000. (a) Network at rest, fx¼ f0. (b) Maximal radial
compression, fr¼ ff¼ 0. (c) Axial stretching, fz¼ 4f0. (d) Axial stretch-
ing, fz¼ 11f0.

 

Global axial position, z [step]

N
or

m
al

iz
ed

 si
m

ul
at

io
n 

re
su

lts

0 5×105 1×106
0

0.5

1 1

Figure 5.15 Simulation of a polymer network in an electrospinning jet, for a se-
quence of 8855 chains in the axial direction, using the force functions of
eqn (5.26) with fr¼ ff¼ f0. The plots are: xz/Ns (solid), xr/(Ns/3)1/2

(dash-dot), vz/v0/Ns
1/2 (dot), and fz/f0/70 (dash). The simulation

parameters are: Ns¼ 400 step (monomers), x0¼ 20 step, f0¼ 0.15,
v0¼ 2.6 �106 step/s, k¼ 6 �10�6, and t0¼ 5.8�10�8 s.
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force-elongation (Gaussian) dependence, the stretching of a subchain mod-
eled by RW is nonlinear and bounded by the subchain’s fully extended length.

The overall simulated network is depicted in Figure 5.16(a), demon-
strating the longitudinal extension and the simultaneous lateral contraction,
resulting in a network radius smaller than the jet radius. An approximation
for the network radius, when neglecting the radial compression force, can be
obtained by11

rP ¼ rJ
xr
x0

(5:27)

The conformation of a sequence of subchains is presented in
Figure 5.16(b) and (c). Obviously, it is not likely that the network would have

Figure 5.16 Conformation of the polymer network during electrospinning, simulated
using the force functions of eqn (5.26), including radial compression.
The conditions are as in Figure 5.15, with r0 ¼ 2.5�105 step. (a) Network
map of a jet section B1 mm long: line segments represent subchains
and line crossings topological entanglements. Viewed density is
diluted�800 in each direction. The jet profile is depicted by the external
lines. (b) A single vertical sequence of linked subchains along the z axis.
(c) Same as (b), but with enlarged subchains (not to scale).

88 Chapter 5

D
ow

nl
oa

de
d 

by
 W

ei
zm

an
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

on
 0

2/
07

/2
01

5 
08

:2
9:

47
. 

Pu
bl

is
he

d 
on

 0
6 

M
ay

 2
01

5 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
18

49
73

55
75

-0
00

71
View Online

http://dx.doi.org/10.1039/9781849735575-00071


such a sharp boundary as depicted, but nevertheless the general pheno-
menon of network compacting should be expected. In this run, the radial
compression force was included, and its effect can be noticed in the gradual
growth of the radial density toward the jet center.

As already implied in the analysis of a single chain in a flow field (Section
5.3.2), the network simulation can be achieved by running a single ‘‘very
long’’ chain of B107 monomers, which represents a sequence of subchains
in the axial direction. Shortly after the jet start, f0 and v0 in eqn (5.23) can be
neglected, and the force function becomes analogous to that of a single
chain in a flow field [eqn (5.15)], f D t0v. The force center is chosen at the jet
start, where the relative velocity between the network and the solvent is zero,
so that half of the chain extends in the direction þz, and the opposite half is
imaginary. v is the jet velocity, and t0 is the monomer’s relaxation time in the
dilute fluid of viscosity Z. Such a ‘‘long’’ chain is depicted in Figure 5.16(b).
This analogy also implies the possibility of a network stretch transition, and
the existence of two distinct energy equilibrium states and corresponding
network stretching lengths; however, as pointed out in the single chain
analysis, for a very long chain this transition occurs at a very low velocity
gradient (see, for example, the left curve in Figure 5.10), and is therefore not
expected during electrospinning.

5.4.3 Analytic Approximation

Using the same approach as for a single chain under tension (Section 5.3),
the subchain mean end-to-end distance (mesh size), x, that results from the
force functions (ignoring radial compression), is11

xz

xmax
¼ sinh f0 þ t0ðvz � v0Þ½ �

cosh½ f0 þ t0ðvz � v0Þ� þ 2 coshð f0Þ
;

xr
xmax

¼ sinhðf0Þ
cosh½ f0 þ t0ðvz � v0Þ� þ 2 coshð f0Þ

:

(5:28)

These equations are in excellent agreement with the simulations (for ex-
ample, the results shown in Figure 5.15). xr can be derived from xz by

xr
x0
¼

3c 1� ðxz=xmaxÞ2
� �

2cþ 1þ ð4c2 � 1Þðxz=xmaxÞ2
� �1=2

; c¼ 1� 3a
x0

� ��1=2

: (5:29)

Shortly after the jet start, but before the network approaches full
stretching ( f o1), the relative longitudinal elongation of a subchain can be
approximated by

xz

x0
� x0t0v0

3
vz

v0

� �
: (5:30)

The dimensionless prefactor ð1=3Þx0t0v0 (length in unit steps), or
ð1=3Þx0v0aZ=ðkBTÞ (length in nm), determines the elongation of the network
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with respect to that of the jet, and is of order 10110�8
s 107

s�1 B 1. Note the
similarity between this prefactor and the dimensionless parameter a used in
the theoretical modeling of the network in ref. 11 (they are the same if z0 is
substituted by a, and the inertia m is neglected), both of which determine the
extent of affinity. In case ð1=3Þx0t0v0¼ 1, the network elongation is affine, as
found by the theoretical modeling. In case ð1=3Þx0t0v0r1, the network
elongation is slower that the jet, and vice versa. Conversely, if affinity is as-
sumed, the value of the monomer’s relaxation time should be t0¼ 3a2/(x0v0)
(length in nm), and the corresponding effective viscosity should be ZE 3kBT/
(ax0v0).

A criterion for the jet velocity vs where subchains approach full stretching
can be defined by substituting xz¼Ns¼ x0

2 in eqn (5.30)

vs �
3
t0
; (5:31)

in which unit steps are used. This expression converges to vs/v0 E Ns
1/2 E

f�1 when affinity is assumed.11

In the case of a constant gradient s¼ v0k in the z direction, the force in that
direction is fz � st0z � st�z=Ns (ignoring f0), where t E t0Ns

3/2 is the sub-

chain relaxation time, and �z¼ z=N1=2
s is the relative position. This force is

analogous to the force in the case of a single chain [eqn (5.16)]. The subchain
end-to-end distance is xz � ð1=3ÞNst0vz � ð1=3Þst�z (in unit steps).

5.5 Discussion and Conclusions
Extensional flow of a semi-dilute polymer solution under a high strain rate
can cause substantial stretching of the polymer network. This effect was
studied theoretically and experimentally, using the technique of electro-
spinning, a flow governed by high strain rate and rapid evaporation.
Electrospun polymer nanofibers are of particular interest, in view of their
small size and broad potential applications in engineering and life sci-
ences. Their unique mechanical properties, such as a size-dependent
elasticity which rises highly above that of bulk material, and the need to
explain these properties, provide the incentive for investigating the poly-
mer matrix conformation in electrospinning jets and in electrospun
nanofibers.

Theoretical modeling and random walk simulations of the dynamic
evolution of the entangled polymer network in an electrospinning jet
predict substantial longitudinal stretching and radial contraction of the
network, a transformation from an equilibrium state to an almost fully
stretched state. The random walk simulation uses a beads-and-springs
network model, with nonlinear entropic elasticity that allows large chain
elongations. Affine network stretching is observed, and the conditions for
affinity are defined. Subchains approach full extension not far (o1 mm)
from the jet start, occurring when the jet velocity reaches a value inversely
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proportional to the polymer volume concentration. The strong increase in
the longitudinal mesh size is accompanied by a decrease in the radial mesh
size as a result of the redistribution of the random walk stepping prob-
abilities. The consequence is a lateral contraction of the network toward
the jet center, proportional to the decrease in the subchains radial
mesh size.

The transformation of subchains from a coil-like equilibrium state into a
stretched state occurs as a continuous crossover, and no phase transition is
observed, in contrast to the well-known coil stretch transition in unen-
tangled free chains. The dominant local force on a subchain is the elastic
force arising from the action of the topologically linked subchains, whereas
the local hydrodynamic forces, whose accumulation along the network gives
rise to the global elastic stretching, are negligible. There exists an analogy
between a vertical sequence of linked subchains in a network and a very long
free chain, implying the possibility of network stretch transition at low jet
strain rates. However, under such conditions, the flow will be dominated by
viscosity and network relaxation rather than elasticity, and therefore such
transition is not expected in electrospinning. Stretching is uniform within
the scale of a single subchain, while within the scale of the network it is
nonuniform in a similar fashion to a single chain past the coil stretch
transition condition.

The simulated predictions were supported by experimental evidence ob-
tained from fast X-ray phase-contrast imaging of electrospinning jets
(Figure 5.17): the polymer concentration at the jet center increased, with a

Figure 5.17 X-ray absorption measurements of electrospinning jets of PEO dis-
solved in water at 3% and 5% volume concentrations. Absorption
coefficient map indicating an increase in polymer concentration at
the jet core (right). Relative polymer concentration change at the jet
center vs. relative jet radius (left).
Adapted from ref. 20.
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distinct crossover that may indicate that the maximal stretching and com-
pacting of the network was reached, occurring at a jet radius reduction ratio
of only 4 : 1, close to the jet start. Further experimental support was obtained
by scanning near field optical microscopy (SNOM) of electrospun conjugated
optically active polymer nanofibers: a dense elongated molecular conform-
ation was revealed, with a rise in the elastic modulus at the fiber core
(Figure 5.18), confirming that the stretched and condensed structure re-
mains after jet solidification.

The validity of the network modeling is restricted to the initial stage of the
jet (first few millimeters), where elastic elongation is still possible, and
therefore the model does not describe the final state of the polymer matrix in
electrospun nanofibers. Additional processes, such as rapid evaporation and
entanglement loss, which can result in chain relaxation, are not accounted
for in the model (the effects of entanglement loss are analyzed in ref. 28).
Nevertheless, the results strongly indicate non-equilibrium, ordered nano-
structures that could remain in the nanofibers after solidification, structures
which may set a new internal scale, and affect the nanofiber mechanical
properties through confinement.

The random walk simulation, developed specifically for this investigation,
provides a flexible and effective tool for analysis and visualization of polymer
networks and individual chains in high strain rate flows. The tool was used
extensively to investigate the conformation of the polymer chains and the
network during electrospinning, under varying process variables, such as
molar mass, flow strain rate, and solution viscosity. It is shown that, al-
though several simplifications were applied in the simulation, the use of an

Figure 5.18 Optical and mechanical measurements of MEH-PPV nanofibers. Op-
tical absorption SNOM map indicating higher polymer density at the
fiber core (left). Young’s modulus AFM maps of fiber cross-sections
indicating increased modulus at the fiber core (right).
Adapted from ref. 21.
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effective potential field induced by the flow represents well the physics of the
polymer chains.

5.6 Appendix: Random Walk Simulation Tool

5.6.1 Program and Examples

The 3D random walk simulation was implemented in a program written in
Mathcad. The core engine of the program consists of a stepping probability
function and a stepping function. The simulation uses the uniform ran-
domization function of Mathcad, and is dimensionless. Unit steps are used
to represent monomers, but since for a given polymer the monomer size a is
constant (of order 1 nm), the real dimensions of the chain can be restored
without losing generality. Similarly, the force is dimensionless, as defined
for eqn (5.5) and (5.6).

The stepping probability function, P(z, r, j) (Figure 5.19), defines the force
functions, and the stepping probabilities associated with them, in accord-
ance with eqn (5.6) and (5.7). The program in Figure 5.19 also incorporates
an example of a conditional hyperbolic boundary, similar to the shape of an
electrospinning jet (see Section 5.4). When the random walk hits the
boundary, a strong force is applied on the monomer in the direction op-
posite to the direction of the last step.

Force functions
(quadratic example)P z ρ, ϕ, ( ) f

Az0 Az1 z⋅+ Az2 z
2

⋅+

Aρ0 Aρ1 ρ⋅+ Aρ2 ρ⋅ z⋅+

Aϕ 0 Aϕ 1 ϕ⋅+ Aϕ 2 ϕ⋅ z⋅+

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

←

f f 10
10

0

sign(ρ)

sign(ϕ)

⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

⋅−← ρ
2

ϕ
2

+( ) r0
1 k z⋅+

>if

Q 2

0

2

x

cosh fx( )∑
=

⋅←

P
1
Q

exp f0 f0− f1 f1− f2 f2−( )T⎡
⎣

⎤
⎦⋅←

Preturn

=

Forces on boundary
(hyperbolic example)

Partition function 

Stepping probabilities 
in 6 directions

Figure 5.19 Random walk stepping probability function in Mathcad. The function
sets the force functions acting on each monomer at the given 3D
position of the monomer [eqn (5.7)], and calculates the corresponding
stepping probability for each of the 6 possible directions [eqn (5.6)]. The
coordinates dimensions are in unit step. Also included is a hyperbolic
boundary function that sets bouncing forces on the boundary in order
to keep the random walk within a confined volume.
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The trends of the stepping probabilities are demonstrated in Figure 5.20
for the simple case of an end force in the z direction [the term Az,0 in
eqn (5.7)], with all other forces null: when the force rises, the probability to
step toward þ z increases, while the other probabilities decrease cor-
respondingly. The probabilities in the presence of a boundary are demon-
strated in the example of Figure 5.21, in which, when a boundary is hit while
stepping in the þ r direction, the probability to step toward �r jumps to 1,
while the other probabilities drop to 0.

The random walk stepping function, R(I, N) (Figure 5.22), executes random
walks for a sample of I chains, each with N steps (i.e., monomers). The
function uses the stepping probabilities, calculated by the function P(z, r, j)
for the next step, to partition the range 0–1 into divisions whose sizes are

0 10 20
0

0.5

1

Radial position, ρ

St
ep

pi
ng

 p
ro

ba
bi

lit
ie

s

+z
-z
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–ρ

Figure 5.21 Stepping probabilities without forces, versus the radial position r, in the
presence of a boundary parallel to z and located at r ¼ 10.
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Figure 5.20 Stepping probabilities along the z axis, as a function of a stretching end
force fz.
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proportional to the probabilities. A random number, uniformly distributed
between 0 and 1, is generated, and the division on which it falls is selected as
the stepping direction.

The function R(I, N) returns the full stepping history of all the chains in
the sample. This data is used by other utilities (not presented here), to
draw the 3D conformation of the stretched chains, to calculate the
statistical distribution of the end-to-end distance R and the corresponding
statistical moments, to calculate the orientational preference of
chain segments, to calculate the free energy of chains, and more.
Examples of chain conformations under stretching are shown in
Figure 5.23, both without and with a cylindrical boundary (similar to the
outer surface of a jet). Boundary causes widening of chains, though not
significantly, in parallel to its surface (also observed in 1D theoretical
analysis30).

The probability density of the end-to-end distance, R¼ j ~R j (Figure 5.24),
shows that, in the case of a tensile force at chain ends, the distribution width
remains essentially unchanged, except under very high forces where the
distance is bounded by the fully extended length of the chain.
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⎜
⎝
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⎟
⎟
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⎠
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⎜
⎝

⎞⎟
⎟
⎟
⎠

←

p0 0←

rndNum rnd 1( )←

pj 1+ P zn 1− ρn 1−, ϕn 1−, ( ) j pj+←

qj rndNum pj≥( ) rndNum pj 1+<( )∧⎡⎣ ⎤⎦←

j 0 5..∈for

zn

ρn

ϕn

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

zn 1− q0+ q1−

ρn 1− q2+ q3−

ϕn 1− q4+ q5−

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

←

n 1 N..∈for

Ri z ρ ϕ( )T←

i 0 I..∈for

Rreturn

= Sample loop,  I times

Coordinates initialization

Chain loop,  N times

Random number generation

Probability bands

Stepping decision

Stepping

Chain  i conformation

All chains in sample

Figure 5.22 Random walk stepping function in Mathcad. The function runs ran-
dom walks for a sample of I chains, each of N monomers, using the
stepping probabilities calculated by the function P (Figure 5.19). The
function returns the full position vectors of each chain and monomer in
the sample. A random number between 0 and 1 is generated for each
step, so that a direction with a higher probability will have a higher
chance to be selected for stepping.
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5.6.2 Network Simulation Procedure

The simulation starts at an initial subchain, and proceeds from subchain to
subchain in accordance with the procedure described in Figure 5.25 (add-
itional details are provided in ref. 11). The force at a given position is cal-
culated by eqn (5.23) or, alternatively, by adding the force increment from
eqn (5.20) to the force in the previous subchain. The mesh size is then ob-
tained by running a RW for the current subchain. In the axial direction, the
simulation typically runs a sequence of B106 subchains. In the radial dir-
ection, the number of subchains is fixed, given by r0/x0 B 104, and the
simulation starts at the network radius, given at each position z by eqn
(5.27), and proceeds toward the jet center.

Figure 5.24 Probability density of relative end-to-end distances of 1000 simulated
chains, each with N ¼ 1000 monomers. A stretching end force fz is
applied, equal to (from left): 0, 0.5, 1, 2, and 4. A comparison to theory
[dashed line, eqn (5.2)] is shown in the inset (fz ¼ 0).

Figure 5.23 Example of random walk simulations of 100 freely-jointed chains, each
with N ¼ 1000 monomers. From left: chains under a field force fz ¼
0.004z, free chains in the presence of a cylindrical boundary, and
superposition of both.
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