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Introduction

Reinforcement at the nanoscale, using fillers like carbon
nanotubes (CNTs), tungsten disulfide nanotubes (WSNTs)
and molybdenum disulfide nanoplatelets (MSNPs), has the
potential for improving the composite strength, stiffness
and toughness compared to microscale reinforcement.
Nanofillers could potentially be used in standard composite
applications, as well as in confined spaces, thin polymer
nanofilms1,2 and electrospun polymer nanofibers.3–5

Nanofillers such as carbon nanotubes possess strength and
stiffness an order of magnitude higher than traditional
microfillers like carbon microfibers.6,7 Furthermore, the ratio
of the filler’s interfacial area to volume (R/R2yR21), which
determines its load bearing capacity, becomes extremely
large for nanofillers, 102–103 higher than microfillers. At the
same time, nanofillers are often short and hollow, have
arbitrarily shaped cross-sections, and form complex arrays
and networks.8

It is the aim of the present study to generalize the
modeling of the mechanical properties of hollow fillers, to

those having an irregular cross-sectional shape, of which
nanofillers are a typical example. Specifically, we demon-
strate that the cross-sectional shape of a reinforcing filler has
a significant influence on the overall mechanical perfor-
mance of the composite, particularly so for nanocomposites
in view of the effects of the filler’s small size and diverse
shapes and structures. For the purpose of this study, we
assume uniform dispersion of the filler in the matrix and
unidirectional alignment, both optimal conditions for
enhanced performance.

We focus on the structural toughening properties of
nanoreinforcement, for which there is growing evidence of
improved mechanical performance.3,9–11 The major mechan-
ism contributing to toughening of reinforced composites is
the energy dissipated when the filler is pulled out from the
matrix through the fracture surface.12 The pullout energy
of nanotube reinforced composites was modeled by
Wagner,13,14 based on the classic models by Cottrell15 and
Kelly–Tyson16 developed for solid fibers. We expand these
models to encompass fillers with arbitrarily shaped cross-
sections, including the distinct class of thin wall fillers. A
starting point for the model is the filler critical length, the
length above which the filler breaks rather than pulls out.

Also, the classic models by Piggott17 and others for the
strength and stiffness of composites are expanded for such
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arbitrarily shaped fillers. The overall mechanical performance
of the composite structure is presented as a tradeoff between
the toughness, strength and stiffness, since these properties
depend differently (and sometimes oppositely) on parameters
such as the filler’s length, cross-sectional shape, strength,
stiffness and volume fraction, as well as the matrix and
interface strength and stiffness. Finally, the performance of
nano- and microreinforcements is compared for several
composite structures with different filler packing schemes.

Effect of filler shape on critical length

The cross-section of an elongated reinforcing nanofiller may
have diverse shapes, as illustrated in Fig. 1. In the most
general case, a single filler has the form of a hollow general
cylinder (a solid bounded by a right ruled closed surface),18

whose cross-section has arbitrarily shaped outline and
multiple cavities (Fig. 1a); a spun bundle of aligned hollow
nanotubes is an example of such a filler (Appendix). An
arbitrarily shaped filler may be solid (Fig. 1d), or have a thick
wall (Fig. 1b) or a thin wall (Fig. 1c). A filler may have a
circular cross-section, and its core may be solid as in a fiber
(Fig. 1g), or hollow with a thin or thick wall, as in a single wall
(Fig. 1e) or multiwall (Fig. 1f) nanotube. Finally, a thin or
thick ribbon (Fig. 1h) is another category of a cylindrical filler.

We therefore seek to generalize our recently proposed
toughness model13,14 of a unidirectional filler, based on the
pullout mechanism, to a wider class of cross-sectional
shapes. We first focus on the critical length of a filler having
an arbitrarily shaped cross-section.

Consider a hollow filler of the form of a general cylinder
embedded in a matrix, with a material cross-sectional area a
and an outer perimeter p. The longitudinal tensile stress in
the filler s(x), and the interfacial stress between the filler and

the matrix t(x), acting on a differential element of the filler
(Fig. 2), are expressed by

pt(x)dx~a s(x)zds½ �{as(x)~a ds (1)

where x is the distance from the filler edge. When the filler
is long and its cavities are narrow, the matrix column
embedded internally inside the filler is constrained by the
relatively small displacement of the stiff filler, resulting in
high matrix stresses close to the filler ends, leading to local
breaking of the matrix. Therefore, the contribution of the
internal matrix column to the stress in the filler is negligible.
Furthermore, for nanofillers, the matrix material (e.g.
polymer) is not likely to penetrate the cavities at all.

The CKT model15,16 assumes that when the tensile load is
applied, the interfacial stress reaches a constant value
t(x)5ti, corresponding to the yield strength of the matrix
or the bonding strength between the filler and the matrix,
whichever is lower. More specifically, according to Mallick,19

this assumption is valid for a ductile matrix, which yields
under a high interfacial stress and flows plastically with little
or no strain hardening. Such an elastic perfectly plastic
matrix maintains a constant yield strength, equal to the
interfacial shear stress ti. By comparison, shear lag based
models predict that in the filler central length the stress
transfer is elastic rather than plastic, whereas in regions close
to the filler edges the matrix may yield or debond.17,20 For a
ductile matrix, with a yield strength lower than the filler–
matrix bonding strength, when the external stress is
gradually increased, the matrix yielded regions expand from
the filler edges toward the center, and the resulting shear lag
stress profile approaches that of CKT. In case it is the filler–
matrix bonding strength which is lower than the matrix yield
strength, the interfacial shear stress ti is the friction stress
caused by the compression applied by the matrix on the
filler.

Integrating equation (1) with a constant interfacial stress,
we obtain

s(x)~tix
p
a

, s(x)ƒsf (2)

where sf is the filler ultimate strength. Thus, the tensile
stress in the filler s(x) grows linearly with the distance from
its edges, until sf is reached and the filler breaks. This occurs
when the filler is longer than a critical length lc, obtained by
substituting x5lc/2 into equation (2)

lc~
2sf

ti

a
p

(3)

Figure 1 Categories of cross-sectional shapes of cylindri-

cal fillers: a arbitrarily shaped outline and cavities (e.g.

aligned NT bundle); b arbitrary shape, single cavity; c arbi-

trary shape, thin wall; d arbitrary shape, solid; e circular, thin

wall (e.g. single wall nanotube); f circular, thick wall (e.g.

multiwall nanotube); g circular, solid (e.g. fiber); h open

shape, thin or thick wall (e.g. flat ribbon, graphene)

Figure 2 Tensile stress s and interfacial stress t acting on

differential element dx of hollow filler with arbitrarily shaped

cross-section, having perimeter p and material area a
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In the case of a thin wall hollow filler having a wall
thickness t (Figs. 1c and 3), the ratio a=p%t, and therefore

lthin
c %

2sf t
ti

(4)

regardless of the cross-section shape, whether circular,
elliptic or warped.

Note that the thin wall critical length does not depend on
the filler lateral size (i.e. width) but only on its thickness. This
outcome is clarified when spreading out the general cylinder
into an equivalent flat ribbon (Fig. 3), for which a=p%t=2
and the critical length is lc~sf t=ti , independent of the
ribbon width p. The critical length of the equivalent ribbon is
half that of the closed shape because its bonding to the
matrix is double-sided. Hence, possibly, the use of ribbons
(e.g. graphene) may be beneficial when a shorter critical
length is desired.

For a circular hollow tube (e.g. a nanotube), with an outer
diameter D, inner diameter d and wall thickness t~(D{d)=2,
we define the following function of the cross-sectional
aspect ratio t/D

AtD:
a

atot
~

D2{d2ð Þ
D2

~4
t
D

1{
t
D

� �
(5)

This function, which represents the ratio between the
filler’s material area a and its total area atot (the area
bounded by the filler perimeter p), ranges from 4t=D%0 for
a thin wall tube (t%D) to 1 for a solid fiber (t5D/2). The ratio
a/p for circular cylinders is therefore

a
p

~
p D2{d2ð Þ

4pD
~t 1{

t
D

� �
~

D
4

AtD (6)

The corresponding critical length from equation (3) is

lc~
2sf t
ti

1{
t
D

� �
~

sf D
2ti

AtD~lsolid
c AtD (7)

which reduces to the known expression lsolid
c ~sf D=(2ti) for

a solid fiber, and to 2sf t=ti of equation (4) for a thin wall
tube.

A tube with thicker wall, larger diameter and higher
tensile strength has a longer critical length, and vice versa
(Fig. 4). For example, the scale of the critical length of a
carbon nanotube is two to three orders of magnitude lower
than that of a carbon fiber (using equation (7) with 101

higher sf, 1023 smaller D and AtD,1). When the filler length
is longer than its critical length (a typical case in microscale
reinforcement), it is desirable to increase the critical length in
order to optimize toughness. On the other hand, as will be
shown later (see also Ref. 13), when the filler length is
shorter than its critical length (a typical case in nanoscale
reinforcement), it is desirable to reduce the critical length, in
other words to decrease the wall thickness, diameter and
tensile strength and increase the interfacial strength.

The aspect function AtD, depicted in Fig. 5, is useful for
comparing the critical length (and as will be seen, the
pullout energy) of a hollow tube to a solid fiber having the
same external diameter. The higher the aspect ratio (thicker
tube wall and/or smaller diameter), the longer the critical
length of the tube with respect to a solid fiber, and vice
versa. Note that lcƒlsolid

c in all cases.

Figure 3 Analogy between thin wall arbitrarily shaped

cylinder and thin ribbon: cylinder is spread out flat and

forms ribbon with thickness t, width p, total perimeter 2p

(both sides) and cross-sectional area a; ribbon has half

critical length of cylinder, assuming double sided bonding

to matrix, and its critical length is independent of its width

Figure 4 Normalized critical length lc=(sf=ti) vs. wall

thickness t and outer diameter D of circular hollow tube

(equation (7)): multiply by y103 to obtain the order of lc
for a CNT; bounds for thin wall and solid cylinders are

marked; lowest possible wall thickness of CNT is that of

single wall that is 0.34 nm

Figure 5 Relative critical length lc=l
solid
c (or aspect ratio

function AtD) versus cross-sectional aspect ratio t/D of cir-

cular hollow tube (equations (7) and (5))
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Effect of filler shape on pullout energy

The energy absorbed during pulling out of a unidirectional
elongated filler from an embedding soft matrix is generally
the major contributor to toughening of a composite
structure. The following analysis generalizes the toughness
model13 to an arbitrarily shaped hollow filler, representative
of a wide class of cross-sectional shapes (Fig. 1), and
expands on thin wall hollow filler (Fig. 1c) and open filler
(Fig. 1h), as well as circular hollow filler (Fig. 1e and f), with a
solid fiber (Fig. 1g) as a particular case.

The force needed to pull out a hollow filler embedded
length x in a soft matrix, when the filler has the form of a
general cylinder with perimeter p, is F(x)~pxti (Fig. 6). The
interfacial stress ti is the yield strength of the matrix or the
interfacial bonding, and is assumed constant as previously
described. Thus, the work for a complete pullout of a filler
that is initially embedded lemb in the matrix is

W(lemb)~
ð lemb

0
F(x) dx~

ptil2
emb

2
(8)

As discussed in the previous section, when the filler is long
and its cavities are narrow, the matrix column embedded
internally (if any) in the filler’s cavities does not pull out and
does not transfer any load from the applied force, since it
breaks at the filler ends during the onset of pullout (this
break dissipates significantly less energy compared to the
pullout energy).

The pullout work for N unidirectional such fillers, whose
embedded length is evenly distributed from 0 to lemb, is

SWT~N

Ð lemb

0 W(lemb) dlembÐ lemb

0 dlemb

~N
ptil2

emb

6
(9)

Consider a composite’s representative volume element
(RVE), whose total cross-sectional area is A, encompassing
the matrix area, the filler cumulative material area Na, and
any cavities inside or outside the filler. Since the volume
fraction of the filler in that RVE is Vf5Na/A, the number of
fillers intersecting the fracture surface is on average

N~
Vf A

a
(10)

independent of the filler length.

Using equations (9) and (10), the pullout energy area
density (in short, pullout energy) is given by

G~
SWT

A
~

Vftil2
emb

6
p
a

(11)

which can be rewritten in terms of the critical length by
substituting the ratio p/a from equation (3)

G~
Vfsf l2

emb

3lc
(12)

independent of the cross-section shape and whether it is
hollow or not.

In the case of a filler whose length l is shorter than its
critical length, for example as typical of most current
nanotubes, the maximum embedded length is lemb5l/2,
and therefore

G~
Vfsf l2

12lc
, lvlc (13)

Note that this expression is universal for any cross-
sectional shape. For a thin wall filler with a wall thickness t,
we substitute lc from equation (4)

Gthin%
Vftil2

24t
, lvlc (14)

independent of the cross-section shape and lateral size. In
the case of a thin wall ribbon-shaped filler (e.g. graphene),
assuming the same interfacial strength (which may not
necessarily be the case), the pullout energy will increase by a
factor of 2. Substituting lc for a circular cross-section from
equation (7) into equation (13)

G~
Vftil2

24t 1{t=Dð Þ~
Vftil2

6D
A{1

tD , lvlc (15)

which reduces to Gsolid~Vftil2=(6D) for a solid fiber (using
equation (5) with t5D/2, leading to AtD51).

The pullout energy in this filler length domain is invariant
with respect to the filler ultimate strength sf. However,
when sf is very high, the pullout energy will not grow
indefinitely with the filler length l because of fracture
mechanics considerations arising from inherent flaws in the
filler. Consequently, the filler will tend to break at the flaw
nearest to the matrix fracture plane, where the filler stress is
highest, and, according to Piggott,17 the pullout energy will

Figure 6 Force F pulling out hollow filler that has initial embedded length lemb in matrix: filler has arbitrarily shaped

cross-section with perimeter p and material area a
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saturate at Gsat~2VftiL2=D, where L is the filler fragment
pullout length. The length L is inversely proportional to the
density of flaws along the filler, derived from the flaw
statistical distribution. Note the similarity between the
expressions of Gsat and Gsolid, obtained by substituting
l52631/2 L.

In the case of a filler that is longer than its critical length,
we observe two possible types of events: if the filler is
embedded more than lc/2 beyond the fracture surface in
both directions, its stress exceeds the ultimate strength and
it will break at the fracture surface,15 dissipating a relatively
low energy compared to pullout; if the filler is embedded
less than lc/2 in one of the two directions, it will pull out
without breaking. Thus, only the latter event contributes to
the pullout energy, and its probability of occurrence is lc/l.
Since the embedded length in that type of event ranges
from 0 to lc/2, we substitute lemb5lc/2 into equation (12),
and adjust by the probability of occurrence

G~
Vfsf lc=2ð Þ2

3lc

lc
l
~

Vfsf l2
c

12l
, lwlc (16)

Note that this expression is universal for any cross-
sectional shape. For a thin wall filler having a wall thickness t,
we substitute lc from equation (4)

Gthin%
Vfs

3
f t2

3t2
i l

, lwlc (17)

independent of the cross-section shape and lateral size. In
the case of a thin wall ribbon shaped filler (e.g. graphene),
the pullout energy will degrade by a factor of 4 (because of

the term l2
c in equation (16)). Substituting lc for a circular

cross-section (equation (7))

G~
Vfs

3
f t2

3t2
i l

1{
t
D

� �2

~
Vfs

3
f D2

48t2
i l

A2
tD, lwlc (18)

which reduces to Gsolid~Vfs
3
f D2=(48t2

i l) for a solid fiber.

The maximum achievable pullout energy Glc is obtained
when the filler’s length is equal to its critical length, or l5lc

(in fact, l should be slightly shorter than lc in order to ensure
no filler breaking). Substituting lemb5lc/2 into equation (12)

Glc~
Vfsf lc

12
(19)

which is universal for any cross-sectional shape. For a thin
wall hollow filler with arbitrarily shaped cross-section, this
expression reduces to (using equation (4))

Gthin
lc %

Vfs
2
f t

6ti
(20)

For a circular hollow tube (e.g. a nanotube), the maximum
pullout energy is (using equation (7))

Glc~
Vfs

2
f D

24ti
AtD~Gsolid

lc AtD (21)

which reduces to Gsolid
lc ~Vfs

2
f D=(24ti) for a solid fiber. The

dependence of Glc on the cross-sectional geometry is
depicted in Fig. 7. The maximum pullout energy cannot
grow indefinitely with sf, and, as previously described, is
bounded by the saturation energy Gsat, which depends on
the density of filler flaws.

The pullout energies for the two filler length domains are
depicted in Fig. 8. Similar plots are known in the literature
for solid fibers, for example see Ref. 21; however, the current
analysis demonstrates the universality of such plots with
respect to any arbitrarily shaped hollow cross-sections.

Figure 8 demonstrates how the pullout energy can be
increased when l,lc: the preferred method, which yields the
highest possible pullout energy for a given lc, would be to
increase l until it approaches lc and the energy reaches its
peak. If that is not possible, lc can be reduced until it
approaches l, achievable by (equation (7) and Fig. 4) using a
filler with smaller wall thickness and/or lateral width, and/or
by increasing the interfacial strength (e.g. by chemical
functionalization of the filler). In the latter method, the
energy will also reach a peak, but a lower peak than in the
first method. For example (Fig. 8), suppose we have
l510 mm and lc520 mm: in the first method the energy will
rise from 250 Pa m to 1000 Pa m by increasing l to 20 mm,
while in the second method it will rise only to 500 Pa m by
decreasing lc to 10 mm.

Figure 7 Maximum pullout energy Glc versus wall thick-

ness t and outer diameter D of circular hollow tube (equa-

tion (21)): normalized energy Gnorm
lc ~Glc=(Vfs

2
f =ti), and

relative energy Glc=G
solid
lc (inset)

Figure 8 Pullout energy G as function of filler length l, for

three values of critical length lc (equations (13), (16) and

(19)): Vfsf=12~50 MPa; holds for any cross-sectional shape
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Combining the two length domains (equations (13) and
(16)), and the maximum achievable pullout energy Glc

defined by equation (19), we obtain

G~
Vfsf

12

l2=lc
l2
c=l

(
~Glc

l=lcð Þ2, lvlc
l=lcð Þ{1, lwlc

(
(22)

which holds for any cross-sectional shape. So, the pullout
energy when l.lc is higher for longer lc and shorter l. By
contrast, when l,lc, the pullout energy is higher for shorter lc
and longer l. A universal pullout energy curve, obtained by
normalizing G by Glc, is depicted in Fig. 9.

Cottrell15 points out an additional domain, where the filler
length is longer than its critical length but not much longer. In
the domain l&lc, when a filler breaks, the nearby fillers will
become overloaded and will also break, and therefore the crack
will propagate at a cross-sectional plane. However, when l.lc
(only slightly longer), the filler will not tend to break at the
fracture plane but rather at its highly stressed length center,
creating a ‘new‘ composite with filler fragments of length
1=2 lcvlvlc (fragments longer than lc will rebreak). The
pullout energy that corresponds to this case is given by
equation (13), and will remain constant upon increasing the
filler length (since the length remains constant on average after
fragmentation), until, when l&lc, it will gradually drop in
accordance with equation (16). See illustration in Fig. 9.

Since the average fragment length in this domain is
l~3=4 lc, the pullout energy will be, according to equa-
tion (13), lower by a factor of (3=4)2%0:56 compared to a filler
that is slightly shorter than its critical length, or l%lc. From a
toughness perspective, since the pullout energy decreases
from its peak for any filler length in the range l.lc, whether
somewhat longer or much longer than lc, it is always
preferable to use fillers that are slightly shorter than their lc.

The effect of the aspect ratio t/D of a circular hollow tube
can be summarized from equations (15) and (18)

G~Gsolid
A{1

tD , lvlc
A2

tD, lwlc

(
(23)

depicted in Fig. 10. So, when l.lc, the higher the aspect ratio
(thicker tube wall), the higher the pullout energy. In other

words, hollow tubes in this domain dissipate less pullout
energy compared to solid fibers. By contrast, when l,lc, the
lower the aspect ratio (thinner tube wall), the higher the
pullout energy. In other words, hollow tubes in this domain
dissipate more pullout energy than solid fibers, and more so
at lower values of the aspect t/D (i.e. shorter lc according to
equation (7)). We can keep on reducing t/D in order to
increase the pullout energy, so long as lc does not become
smaller than l, switching to the domain l.lc. Clearly, the wall
thickness cannot be reduced below the width of a single
layer of atoms as in a single wall nanotube.

The combined effect of the diameter and aspect ratio for a
circular hollow tube can be expressed by rewriting
equation (22) in the following form

G~Gmax
lc=lð Þ{1, lvlc
lc=lð Þ2, lwlc

(
(24)

where lc is given in equation (7), and the term
Gmax~Vfsf l=12 indicates the maximum possible pullout
energy that can be achieved for a given tube length l by
matching lc to it. When l%lc (Fig. 11) as is typical for most
current nanotubes, the effect of reducing the diameter at a
given tube length has a dramatic positive impact on the
pullout energy. This size effect occurs earlier (i.e. at a larger
diameter) for lower aspect ratios (thinner wall thickness). In
other words, the maximum pullout energy for a given tube
length can be achieved by gradually reducing the external
diameter, while preferably keeping a thin wall, effectively
diminishing the critical length toward the tube length. If the
diameter is reduced beyond the point where l5lc, the trend
will be reversed and the pullout energy will gradually
decrease.

Effect of filler shape on strength and
stiffness

A change in a design parameter, such as the filler’s length
or cross-sectional shape, in order to improve one material

Figure 9 Universal curve depicting relative pullout energy

G/Glc versus relative filler length l/lc (equation (22)): holds

for any cross-sectional shape; dashed curve illustrates case

of fillers somewhat longer than lc described in text

Figure 10 Dependence of relative pullout energy G/Gsolid

on cross-sectional aspect ratio t/D of circular hollow tube,

when tube length l is longer (lower curve) and shorter

(upper curve) than critical length lc (equation (23) com-

bined with equation (5)): maximum achievable G in domain

l,lc is bounded by minimal possible wall thickness, and

so long as lc is not reduced below l
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property, does not necessarily result in improving the other.
Specifically, we are interested in studying the tradeoffs
between the composite strength, stiffness and toughness,
with respect to the filler geometry. We now use existing
composites strength and stiffness models (for an example
see Ref. 17) and generalize them to an arbitrarily shaped
hollow filler. We then compare their strength and stiffness
parametric trends to those of the toughness model.

Composite strength

Consider a composite’s RVE, whose total cross-sectional area
is A. The matrix has an ultimate strength sm, containing
evenly dispersed unidirectional filler with ultimate strength
sf. The filler is a general cylinder with length l, material cross-
section area a and perimeter p (Fig. 2). When a sufficiently
high load is applied on the composite, the interfacial stress is
assumed to reach a constant value ti as previously described,
corresponding to the matrix yield strength or the interfacial
bonding strength. The stress in the filler, as a function of the
distance x from the filler end, can be derived by substituting
the ratio p/a from equation (3) into equation (2)

s(x)~tix
p
a

~
2sf x

lc
, s(x)ƒsf (25)

Note that this formulation is universal with respect to the
filler’s cross-sectional shape and lateral size. At distances
longer than lc/2 from the filler end, the filler stress will reach
its ultimate strength sf.

When an ultimate load F is applied, a crack develops in the
matrix as a result of small debonding cracks at the filler ends.
Consequently, fillers that are embedded a short length
beyond the fracture plane will pull out, while those that are
embedded longer will break at the fracture plane. So, except
for shortly embedded filler sections, both matrix and filler
are simultaneously exploited to their ultimate strength. The
force borne by the matrix surface bonded to the filler end is
neglected, since it is much lower than the pullout force.

When the filler length is shorter than its critical length l,lc,
the maximum stress in the filler occurs at x5l/2, where
s(l=2)vsf , and the filler’s contribution to the overall stress is
by means of pullout. Since the matrix fracture plane can fall

anywhere between the filler ends, the average stress in the
filler at the fracture surface is 1=2 s(l=2), and the long-
itudinal strength of the composite is

sc~
F
A

~
Fpullout

filler zFultimate
matrix

A

~1=2
Na
A

s(l=2)z
Amatrix

A
sm, lvlc

(26)

where N is the average number of fillers intersecting the
fracture surface, and Amatrix is the material cross-sectional
area of the matrix. Using N from equation (10) and
s(l=2)~sf l=lc from equation (25)

sc~1=2
l
lc

VfsfzVmsm, lvlc (27)

where Vf and Vm are the filler and matrix volume fractions,
respectively. Note that Vm is slightly less than (12Vf) for
hollow fillers (see more on this further on). This equation is
invariant with respect to the cross-sectional shape and
lateral size, in other words it is a generalization of standard
fiber reinforcement models such as in Ref. 17 to arbitrarily
shaped fillers. As for the pullout energy in this length
domain, a higher l/lc improves the composite strength.
Furthermore, the same value of the maximum composite
strength can be achieved either by increasing l toward lc or
decreasing lc toward l, contrary to the maximum pullout
energy (Glc from equation (19)), which decreases when lc is
decreased. The maximum contribution of the filler to the
composite strength is 1=2Vfsf .

For a thin wall hollow filler with a wall thickness t, we
substitute lc from equation (4)

sthin
c %1=4

ti

sf

l
t

VfsfzVmsm, lvlc (28)

independent of the cross-section shape and lateral size. In the
case of a thin wall ribbon shaped filler (e.g. graphene), the
contribution of the filler to the composite strength will
improve by a factor of 2 as a result of the duplication of the
interfacial area, as for the pullout energy in this length domain.

For a circular hollow tube, we substitute lc from
equation (7)

sc~
ti

sf

l
D

A{1
tD

� �
VfsfzVmsm, lvlc (29)

depicted in Figs. 13 and 14. For a solid fiber, substitute
AtD51. Note that sf can be eliminated from equations (28)
and (29) (it appears in both the numerator and denomi-
nator), since the filler ultimate strength is not reached in the
domain l,lc.

When the filler length is longer than its critical length l.lc,
at a distance longer than lc/2 from the filler ends the fracture
stress is sf for a fraction of (l2lc)/l of the fillers, while at
shorter distances from the ends the filler’s contribution to
the overall stress is through pullout and its average stress is
1=2 sf for a fraction of lc/l of the fillers. Thus, the composite
longitudinal strength is

sc~
F
A

~
Fpullout

filler zFultimate
filler zFultimate

matrix

A

~1=2
Na
A

lc
l
sfz

Na
A

l{lc
l

sfz
Amatrix

A
sm, lwlc

(30)

Figure 11 Relative pullout energy G/Gmax versus longitu-

dinal aspect ratio D/l for three aspect ratios t/D of circular

hollow tube (equation (24) combined with equation (7)):

plotted for domain l,lc, with 2ti=sf~0:01
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Using N from equation (10)

sc~ 1{1=2
lc
l

� �
VfsfzVmsm, lwlc (31)

invariant with respect to the cross-sectional shape and
lateral size. Note that, contrary to the pullout energy in this
length domain, a higher l/lc improves the composite
strength, and the maximum strength is obtained for long
fillers (l&lc), for which equation (31) reduces to the known
mixture rule, sc~VfsfzVmsm. Thus, the maximum con-
tribution of the filler to the composite strength is Vfsf, while
the minimum is 1=2Vfsf .

For a thin wall hollow filler with a wall thickness t, we
substitute lc from equation (4)

sthin
c % 1{

sf

ti

t
l

� �
VfsfzVmsm, lwlc (32)

independent of the cross-section shape and lateral size. For
a very thin filler wall (small t), this equation reduces to the
same simple mixture rule as for very long fillers, implying
that for a given volume fraction, a short hollow filler can
deliver the same composite strength as a long solid filler,
while maintaining toughness by keeping its length slightly
below the critical length. We elaborate on such length-
thickness tradeoffs further on. In the case of a thin wall
ribbon-shaped filler (e.g. graphene), the contribution of the
filler to the composite strength will improve (by a factor
smaller than 2) as a result of the duplication of the
interfacial area, contrary to the pullout energy in this length
domain.

For a circular hollow tube, we substitute lc from
equation (7)

sc~ 1{1=4
sf

ti

D
l

AtD

� �
VfsfzVmsm, lwlc (33)

depicted in Figs. 13 and 14. For a solid fiber, substitute
AtD51. Note that reducing the cross-section aspect t/D
(lower AtD) has the same effect on improving the composite
strength as reducing the longitudinal aspect D/l.

As mentioned before, Vm is slightly lower than (12Vf)
when the filler contains cavities. Thus, a correction factor is
needed for hollow fillers if the matrix material (e.g. polymer)
does not penetrate the filler’s cavities, particularly when the
longitudinal aspect ratio l/D is high or when the internal
cavity is narrow or closed at its ends (e.g. in CNT). In such
cases, the filler cavities are void and do not share the load.
Thus, using equations (5) and (10)

Vm~1{
Natot

A
~1{

Vf

AtD
(34)

where atot is the total area bounded by the filler perimeter p,
and the term on the right is for a circular hollow tube.
Consequently, for a given volume fraction, while a thinner
tube wall (smaller AtD) improves the contribution of the filler
to the composite’s strength, it weakens the contribution of
the matrix. Similarly, Vm should also be corrected for gaps
between closely-packed fillers, which are not penetrated by
the matrix or are too small to share the load, as in the case of
NT bundles (Appendix).

Composite stiffness

The theoretical model for the elastic modulus of a composite
with unidirectional reinforcing fibers was developed by Cox,
using the shear lag theory.17,20 We adjust the model for a
filler with an arbitrarily shaped cross-section

Ec~ 1{
tanh(bl=2)

bl=2

� �
Vf EfzVmEm, b2~

2pGm

Ef a ln(2R=D)
(35)

where Ef and Em are the tensile moduli of the filler and the
matrix respectively, Gm is the matrix shear modulus, a is the

filler material cross-section area, D is the filler mean lateral
dimension and R is the mean lateral distance between
adjacent fillers (Fig. 12). As in the strength model, Vm is
slightly less than (12Vf) for slender hollow fillers, as
calculated by equation (34).

Note that R is a mean value for the distance between
fillers that protrude through an arbitrary cross-section of the
composite. Assuming square lateral packing, a single cell
R6R has an area R2, and contains four portions of a filler
with an average cumulative area a. Hence, the filler volume
fraction is Vf~a=R2, and therefore

ln
2R

D

� �
~1=2 ln

4a

Vf D
2

 !
(36)

Contrary to the pullout energy, when extending the
length of the filler (very large l), the bracketed term in
equation (35) has an upper limit value of 1, and the
composite’s elastic modulus reaches its maximum (for a
given volume fraction), expressed by the known mixture
rule, Ec~Vf EfzVmEm. Thus, the maximum contribution of
the filler to the composite stiffness is VfEf.

For a thin wall hollow filler with a wall thickness t, we
approximate the filler perimeter by pD, and therefore the
cross-section material area can be estimated by a%pDt.
Substituting into equation (35) and using equation (36),
we arrive after rearrangement of terms at the following
estimation

bl
2

� �
thin

%
l

D

Gm

Ef

� �1=2 t

D
ln

4p
Vf

t

D

� �� �{1=2

(37)

Note that, unlike the toughness and strength, the stiffness
of a thin wall filler is dependent on the cross-section mean

Figure 12 Square packing of hollow fillers with arbitrarily

shaped cross-section: R is mean distance between fillers,

a is filler material cross-section area and �D is filler mean

lateral size
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size D, which appears in the longitudinal and cross-sectional
mean aspect ratios, l=D and t=D respectively. For a very thin
filler wall (small values of t=D), the term bl/2 of equation (37)
becomes very large, and equation (35) reduces to the same
simple mixture rule as for very long fillers. This outcome
implies that, for a given volume fraction, a short hollow filler
can deliver the same composite stiffness as a long solid filler,
without compromising the toughness if its length is kept
slightly below the critical length. More on such tradeoffs is
discussed further on.

In the case of a circular hollow tube, we replace (with the
help of equation (5)) D~D and a~pD2AtD=4, thus

ln
2R

D

� �
~

1
2

ln
p AtD

Vf

� �
(38)

Substituting into equation (35)

bl
2

~2
l

D
Gm

Ef

� �1=2

AtD ln
p AtD

Vf

� �� �{1=2

(39)

which reduces to the known expression for a solid fiber
when AtD51. Equation (35) with equation (39) is depicted in
Figs. 13 and 14. Note that reducing the cross-section aspect
t/D (lower AtD) has the same effect on improving the
composite stiffness as increasing the longitudinal aspect l/D.
When the cross-section aspect is increased (higher AtD), the
composite’s elastic modulus monotonically diminishes until
it reaches a minimum at a solid fiber. Hence, when high
stiffness is desired (at a given volume fraction), a thin wall
filler is preferable to a solid fiber.

Comparison to toughness

Reinforcement design is the result of a tradeoff between the
desired composite performance criteria, mainly its tough-

ness, strength, and stiffness (elastic modulus), which are
determined by the filler’s length, cross-sectional shape,
mechanical properties and volume fraction, as well as by the
matrix and interface mechanical properties. The following
description highlights some of these dependencies, for a
fixed filler volume fraction.

The plot in Fig. 13 summarizes the composite’s toughness,
strength and stiffness performance as a function of the
longitudinal aspect ratio l/D of a circular hollow tube. In the
domain l,lc, a common case for nanoreinforcement, the
performance parameters improve simultaneously when the
ratio l/lc is increased, either by increasing l or decreasing lc.
By contrast, in the domain l.lc, a typical case for micro-
reinforcement, when the strength and stiffness improve, the
toughness degrades. However, the strength and stiffness in
the domain l,lc are much lower compared to the domain
l.lc, and do not approach their optimal values. For example,
when the toughness is at its optimum (l5lc), the composite
strength is only half its maximum possible value.

Furthermore, when l%lc as is typical for nanotubes,
reducing the diameter has a dramatic positive impact on
all three performance parameters. By gradually reducing the
external diameter, the toughness increases toward its
maximum value, while the strength and stiffness increase
as well. This size effect occurs earlier for lower aspect ratios
(thinner wall thickness). However, when l.lc, the toughness
trend with respect to the diameter is reversed, while the
strength and stiffness keep improving.

The effect of the cross-sectional aspect ratio t/D of a
circular hollow tube is depicted in Fig. 14. In the domain
l,lc, the performance parameters improve simultaneously

Figure 14 Relative toughness G/Gsolid (equation (23)),

strength sc=s
solid
c (equations (29) and (33)) and stiffness

Ec=E
solid
c (equations (35) and (39)) versus cross-sectional

aspect ratio t/D of circular hollow tube: aspect function

AtD is given by equation (5), and is equal to 1 for solid

fiber; strength curve for l.lc is plotted for

l=lsolid
c ~2(l=D)(ti=sf)~1; higher values will squeeze graph

downward, with minimum at 1; lower values will stretch it

upward, with maximum at the l,lc curve; stiffness curve

is plotted for (l=D)(Gm=Ef)
1=2~1 and Vf50.05; higher

values will squeeze graph downward (with minimum at 1),

while lower values will stretch it upward; strength and

stiffness curves account only for filler’s contribution to

composite (first term in equations (29), (33) and (35))

Figure 13 Relative toughness G/Glc (equation (22) com-

bined with equation (7)), strength sc=(Vfsf) (equations (29)

and (33)) and stiffness (elastic modulus) Ec=(VfEf) (equa-

tions (35) and (39)) versus longitudinal aspect ratio l/D of

circular hollow tube: toughness and strength curves are

plotted for lc=D~sf AtD=(2ti)~100; thinner wall tube will

shift lc/D point to left (i.e. aspect function AtD will be smal-

ler, see equation (5)); stiffness curve is plotted for

Gm=Ef~10{3 and AtD ln p AtD=Vfð Þ~4; thinner wall tube will

stretch graph upward; strength and stiffness curves

account only for filler’s contribution to composite (first

term in equations (29), (33) and (35))
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when t/D is decreased (thinner tube wall). By contrast, in the
domain l.lc, when the strength and stiffness improve, the
toughness degrades. When the tube’s longitudinal aspect
ratio l/D is increased to high values, the strength and
stiffness level off (Fig. 13) at a maximum value, and cannot
be further improved by modifying the cross-sectional aspect
ratio.

Geometric tradeoffs

We observe that the equations describing the composite
toughness (equations (15) and (18)), strength (equations (29)
and (33)) and stiffness (equations (35) and (39)) for circular
hollow fillers contain functions of both the longitudinal
aspect l/D and the cross-sectional aspect t/D, whereas the
common models for circular solid fillers (e.g. fibers) contain
l/D only. Hence, where hollow fillers are concerned, both
geometrical aspect ratios play a significant role in determin-
ing the overall mechanical performance of the composite. In
fact, the overall performance is the result of a tradeoff
between the two aspect ratios, which can be visualized by
writing equal performance expressions for G, sc and Ec,
based on the aforementioned equations

l2=Dð Þlvlc
G

l1=2=D
� �lwlc

G

l=Dð Þsc

9>>>=
>>>;
*AtD

l=Dð ÞEc* AtD ln p AtD=Vfð Þ½ �1=2

(40)

where AtD is the aspect function of t/D defined in
equation (5). The dependencies in equation (40), depicted
in Fig. 15, were derived by expressing l/D as functions of t/D,
where all other parameters are assumed constant. Although,
in the case of G, the longitudinal aspect is expressed as l2/D
(l,lc) and l1/2/D (l.lc), the trend of l/D is maintained and it
acts in the same direction for both l domains.

Figure 15 demonstrates the performance invariance with
respect to size scaling (e.g. from microscale to nanoscale,
and vice versa) obtained by modulating the geometric
parameters D, t and l. It can be seen, for all three
performance parameters, that the longitudinal aspects ln/D
are monotonically increasing functions of t/D. Consequently,
a desired performance change obtained by increasing (or
decreasing) l/D can be matched by increasing (or decreas-
ing) t/D instead, of course within the minimum and
maximum wall thickness boundaries. This means, for
example, that the overall performance of short hollow fillers,
typical of nanofillers, can match and even exceed that of
long solid microfillers. In the case of G, t/D can be decreased
so long as the resulting Glc (equation (21)) does not drop
below the desired G.

The following example, comparing the composite
strength of two alternative fillers with the same tensile and
interfacial strength and same volume fraction, but with a
completely different size scale, may help clarify the issue.
First, consider a solid fiber with D51 mm and l51 mm,
which delivers a desired composite strength. Its aspect ratios
are t/D50.5 and l/D51000, denoted by point F on Fig. 15
(l/D is normalized to 1). Now, exchange this filler by a hollow
single wall nanotube, with D520 nm and t50.34 nm, so that
t/D50.017. Its corresponding length is l51.3 mm (l/D567),

denoted by point NSW in Fig. 15. Optionally, we exchange
the filler by a multiwall nanotube, with D520 nm and
t53.4 nm (10 single atom layers), so that t/D50.17 and
l511.3 mm (l/D5560), denoted by point NMW in Fig. 15. All
three filler types deliver the same composite strength
(however, since nanotubes are typically stronger than fibers,
they will in fact deliver higher composite strength, as
discussed in the next section). Similar calculations, carried
out for the toughness and stiffness using equation (40) and
Fig. 15, show similar geometrical tradeoffs.

Nanotoughness compared to
microtoughness

The potential toughness, strength and stiffness performance
of nanoreinforcement using multiwall CNT fillers, is com-
pared to microreinforcement using carbon microfibers (CFs),
expanding our previous work.10,13 We focus on the following
four types of gedanken experiments illustrated in
Figure 16b–e, compared to the reference carbon microfiber
configuration in Fig. 16a, assuming the same filler volume
fraction for both nanotubes and microfibers.

First, we consider uniformly dispersed unidirectional long
carbon nanotubes, of length l5lc (Fig. 16c), a somewhat
optimistic assumption in view of current technological
feasibility. The length of the reference carbon microfibers
is assumed to be l5lc as well. Using the optimal pullout
energy Glc~Vfs

2
f D=(24ti) from equation (21), the toughness

performance ratio between CNT and CF reinforced compo-
sites is estimated by

GNT

GCF
~

GlcNT

GlcCF
~

s2
NTDNTtiCF

s2
CFDCFtiNT

&
sNT

sCF

� �2DNT

DCF
*1 (41)

assuming the same interfacial strength for both filler types,
tiCF%tiNT. In this equation, the following order of magnitude

Figure 15 Equal composite performance curves (or lines

of isoperformance) of the toughness G, strength sc and

stiffness Ec, depicted in aspect ratios space – longitudinal

aspect ln/D versus cross-sectional aspect t/D, for a circu-

lar hollow tube (equation (40)): longitudinal aspects are l/D

for sc and Ec, l2/D for G when l,lc, and l1/2/D for G when

l.lc, normalized to a maximum value 1; Ec curve is plotted

for Vf50.05; points F, NMW and NSW denote solid fiber,

multiwall nanotube and single wall nanotube examples

respectively, discussed in the text
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ratios were used: sNT=sCF*10 and DNT=DCF*0:01. This
estimate finds the microfibers and nanotubes equivalent in
their composite toughness. Note that the use of graphene
has the potential of improving the nanoreinforcement by a
factor of 2. The strength and stiffness performance ratios for
this structure are estimated by sNT=sCF*10 (equation (27))
and ENT=ECF*10 (equation (35)) respectively, demonstrating
a potential advantage for the nanotube reinforced compo-
site, even though the toughness is not improved.

As already noted, most current CNTs are shorter than their
critical length, and therefore for such cases the assumption
l5lc used in the previous structure (equation (41)) should be
replaced by l,lc (Fig. 16b)). Using a nanotube length of
order lNT=lcNT&0:1 for this structure, the toughness ratio
estimate is reduced by the factor (lNT=lcNT)2*0:01 (equation
(22)) with respect to equation (41), favoring microfibers over
nanotubes. If, however, we use single wall instead of
multiwall nanotubes, the critical length can possibly be
reduced so that lNT=lcNT&1, and consequently, the tough-
ness will decrease (in accordance with equation (21)) only by
the factor AtDy0.1 (assuming t/D<0.025)

GNT

GCF
~

Gthin
lcNT

GlcCF
~

Gsolid
lcNT

GlcCF
AtD*0:1 (42)

where we used Gsolid
lcNT=GlcCF*1 from equation (41). The

strength and stiffness performance ratio for this structure are
estimated by sNT=sCF*10 (equation (27)) and ENT=ECF*10
(equation (35)) respectively, demonstrating a potential
advantage for the nanotube reinforced composite, even
though the toughness is degraded.

A compact nanotubes packing was demonstrated by
Garcia et al.,22 using reinforcement by a forest of aligned
carbon nanotubes transplanted in the interlaminar region in
laminates (Fig. 16d). Analysis of a similar structure was
carried out by Wagner et al.,13,14 considering a large number
of parallel nanotubes with their total volume equivalent to
that of a microfiber, yielding

nGNT

GCF
~

nDNTtiNTl2
cNT

DCFtiCFl2
cCF

&
sNT

sCF
*10 (43)

where n~(D2
CF=D2

NT)(lcCF=lcNT) is the number of nanotubes,
and assuming l5lc for both the nanotubes and the

microfiber. This structure is advantageous to nanotubes.
The strength performance ratio for this structure is estimated
by (sNT=sCF)(lcCF=lcNT)%DCF=DNT*100, demonstrating a
significant potential advantage for the nanotube reinforced
composite, as well as toughness improvement.

The fourth structure compared here is a composite
reinforced by long bundles of aligned compactly packed
carbon nanotubes, or nanotube fibers (NTFs) (Fig. 16e),
discussed in Appendix. The toughness performance ratio is
(equations (49) and (21))

GNTF

GCF
~

GlcNTF

GlcCF
&

sNT

sCF

� �2DNTF

DCF
&

sNT

sCF

� �2

*100 (44)

using DNTF=DCF*1, and assuming l5lc for both the
nanotube fibers and the carbon fibers. This structure offers
a substantial potential advantage over carbon microfibers.
The strength and stiffness performance ratios for this
structure are estimated by sNT=sCF*10 (equation (27))
and ENT=ECF*10 (equation (35)) respectively, advantageous
as well to the nanotube fibers. These estimates suppose
perfect compact packing of the nanotubes in each bundle,
and efficient stress transfer from the bundle’s boundary to its
core, both somewhat compromised in practice due to gaps
between the nanotubes and matrix penetration into the
bundle (Appendix).

Based on the above estimates, the relative toughness,
strength and stiffness of the four nanostructural types of
Fig. 16b–e, with respect to the reference carbon microfiber
configuration of Fig. 16a, are illustrated in Fig. 17. From a
mechanical viewpoint, the nanocomposite structures of
Fig. 16c–e are most advantageous, showing a potential
simultaneous improvement in toughness, strength and stiff-
ness.

As a final comment, we address the potential performance
of composites reinforced by inorganic nanotubes such as
WSNTs. Recent studies23,24 have shown that, although
WSNTs are intrinsically weaker than CNTs, WSNT reinforced
composites have a comparable and sometimes higher
toughness compared to CNT reinforced composites, without
compromising other mechanical properties. Among the
reasons cited in these studies is the presence of sulfide
and oxysulfide functional groups, which increases the

Figure 16 Gedanken experiments of unidirectionally aligned nanoreinforcing fillers: a uniformly dispersed long CF (refer-

ence configuration); b uniformly dispersed short NT; c uniformly dispersed long NT; d interlaminar reinforcement by long

NT; e uniformly dispersed long NT fibers (NTF)
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cross-linking within the matrix and the interfacial strength
between the WSNTs and the matrix, and generates a more
uniform and controlled dispersion of the WSNTs in the
matrix, in contrast to the tendency of CNTs to aggregate.
These preliminary results should be substantiated and
expanded, for example by means of experimental data on
the interfacial strength between WSNTs and various matrix
materials.

Conclusion

The present analysis generalizes the modeling of the
mechanical properties of composites comprising a soft
matrix and unidirectional uniformly dispersed hollow fillers
with arbitrarily shaped cross-sections, typical of nanorein-
forced composites. The generalized model applies to a wide
variety of filler types, including CNT, WSNT, MSNP and CNT
fibers (CNTF). Of particular interest in this work is the
evaluation of the composite toughness, strength and
stiffness dependence on the filler size and shape character-
istics, such as diameter, wall thickness and length. The
toughness was expressed by the energy dissipated when the
filler pulls out from the matrix during the composite fracture,
taking into consideration the filler critical length.

It is shown that the critical length and the pullout energy
of a thin wall filler, such as a single wall carbon nanotube
(SWCNT), depend on the wall thickness rather than on the
external shape and lateral size of the filler. This outcome
leads to an analogy between a thin wall filler and a thin flat
ribbon such as graphene, which has a double sided bonding
area and hence half the critical length. The use of graphene
instead of nanotubes may therefore offer improvement of
the composite toughness in those cases where a shorter
critical length is desired.

A convenient function of the aspect ratio between the
wall thickness and the outer diameter is used to express the
effect of the wall thickness on the critical length and pullout
energy of hollow tubes. This function, termed the ‘aspect
function’, rises monotonically with the aspect ratio (from a
thin wall tube to a solid fiber). A tradeoff exists between the

filler cross-sectional aspect ratio (wall thickness/diameter)
and longitudinal aspect ratio (length/diameter), such that a
desired performance can be achieved by modifying either of
them. In this way, for example, thin wall short fillers can
match the performance of long solid fillers at the same
volume fraction.

Two filler length categories are characterized with respect
to the filler critical length, regardless of the cross-sectional
shape: fillers shorter than their critical length, whose pullout
energy is inversely dependent on the critical length, and
fillers longer than their critical length, whose pullout energy
is proportional to the square of the critical length. The
maximum pullout energy is achieved when the filler length
is slightly below the critical length. Nanotubes typically
belong to the short filler category, and therefore, to achieve
a high pullout energy, their critical length should be
shortened. This can be achieved by selecting nanotubes
with smaller diameter and/or wall thickness (e.g. switching
from MWCNT to SWCNT), keeping the filler volume fraction
constant, as well as by increasing the interfacial strength
(e.g. by using a stronger matrix or by functionalizing the
nanotubes11). These dependencies reverse when the filler is
longer than the critical length.

The parametric trends regarding the toughness of short
fillers coincide with those for the composite strength and
stiffness, such that decreasing the critical length benefits all.
By contrast, in the domain of long fillers, the trends are
reversed, and an increase in the critical length benefits the
toughness while degrading the strength and stiffness, and
vice versa.

Comparison of the reinforcement performance of CNT to
carbon microfibers, when the filler is uniformly and unidir-
ectionally dispersed in the matrix at the same volume fraction,
shows that nanotubes have the potential of simultaneously
achieving up to two orders of magnitude better toughness,
strength and stiffness, depending on the structural config-
uration. Specifically, nanotubes are most advantageous when
their length approaches their critical length, and when they
are compactly packed in structures such as aligned forests
embedded in the interlaminar region of laminates, or long
woven bundles in the form of fibers (CNTF). An interesting
outcome of the analysis is that aligned agglomerations of
nanotubes that form bundles may be advantageous in
toughness compared to unbundled nanotubes.

The full potential of nanocomposites is yet to be achieved.
Challenges are still high in forming desired superstructures of
nanofillers in the matrix, with the intention of exploiting their
utmost properties. Current technology runs into difficulties in
obtaining homogenous blends of nanotubes in a polymer
solution, achieving unidirectional alignment of nanotubes in a
matrix, or reaching a very high filler volume fraction as in
biological tissues. However, the present analysis demon-
strates how the properties of nanocomposites can be
optimized by modulating the filler shape and dimensions,
as well as material and interface properties. In future work, the
analysis will be expanded to randomly oriented nanofillers.
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Appendix

Aligned nanotube bundles: example of
complex geometry

Ultra long aligned CNT bundles, commonly termed CNT
fibers or CNTF, synthesized by spray pyrolysis of ferrocene/
xylene solutions, can reach several microns in diameter and
contain 105–106 multiwall CNTs in a cross-section.25,26 Within
the same category of structures are bundles that contain a
smaller amount of CNTs, which sometimes form sponta-
neously as a result of aligned agglomeration of CNTs in a
polymer solution, for example under extensional flow.3,4 The
latter phenomenon is usually perceived as undesirable from
a mechanical viewpoint, but this is not always the case as
will be shown further on. The cross-sectional geometry of an
aligned bundle is an example of a filler with arbitrarily
shaped outline and multiple cavities, as presented in Fig. 1a.
The following analysis applies the methods developed in this
work to such bundles.

The calculation of the mechanical properties of aligned
bundles embedded in a soft matrix should take into
consideration the actual complex cross-sectional geometry
of the bundle. Figure A1 illustrates the cross-section of a
bundle for two types of packing: tightly packed nanotubes
wherein the gaps between adjacent nanotubes are void of
matrix material, and loosely packed nanotubes wherein the
matrix material penetrates inside the bundle, thus increasing

the effective interfacial area and affecting the stress transfer
between outer and inner nanotubes.

Assuming the nanotubes in a bundle are tightly packed in
a hexagonal array (Fig. A1b), the nanotube-matrix interface
exists only at the external surface of the outermost
nanotubes exposed to the matrix, and the stress in the
bundle propagates inwards via interactions between adja-
cent nanotubes. Thus, the geometry is defined by the total
outer perimeter of the bundle ptot

b and the total area atot
b (the

area bounded by the perimeter ptot
b , including material and

all forms of internal voids).
A correction factor should be applied to the perimeter, to

account for the actual contact area between the matrix and
the circular profile of each nanotube. For a nanotube with an
external diameter D, the factor is equal to half its perimeter,
1=2 pD, divided by its width D, and therefore the actual
perimeter is

pb%
1=2pD

D
ptot

b %
p

2
ptot

b (45)

Observing a representative area element indicated by a
triangle in Fig. A1b, its material area fraction is equal to the
material area of three 60u nanotube sections, 3=6a (a is the
material cross-sectional area of a single nanotube), divided
by the triangle area 31=2=4 D2. Thus, the bundle material
cross-sectional area is given by

ab%
1=2 a

31=2=4 D2
atot

b %
p AtD

2|31=2
atot

b (46)

where AtD is the cross-sectional aspect function of a single
nanotube, defined in equation (5), which ranges from
4t=D%0 for a thin wall tube (t%D) to 1 for a solid fiber
(t5D/2). If the nanotube wall thickness is unknown, the
bundle’s actual material cross-sectional area can be derived
by ab~rl=rNT, where rl is the linear density of the bundle,
and rNT is the nanotube material density.

Substituting the bundle’s actual perimeter pb from
equation (45) and its actual material cross-sectional area ab

from equation (46) into equation (3), we obtain the bundle’s

Figure A1 Cross-sectional view of nanotube bundle, illustrating a tight and loose packing and b magnified section of

tight packing: D, t and a are diameter, wall thickness and material cross-sectional area of single NT respectively; ptot
b is

total outer perimeter of bundle, and atot
b is its total area (area bounded by perimeter ptot

b ); Db is outer diameter of bundle

with circular cross-section

Nanocomposites, 2015, 1, 3-17 Greenfeld and Wagner Nanocomposite toughness, strength and stiffness

Nanocomposites 2015 VOL 1 NO 1 15

http://www.maneyonline.com/action/showImage?doi=10.1179/2055033214Y.0000000002&iName=master.img-031.jpg&w=359&h=186


critical length

lcb~
2sf

ti

ab

pb
%

2sf AtD

31=2ti

atot
b

ptot
b

(47)

regardless of the bundle cross-sectional shape. For a bundle
with a circular cross-section having a diameter Db (Fig. A1a),

atot
b =ptot

b ~
1
4

Db, and therefore, the critical length is

lcb%
sf Db

2|31=2ti
AtD (48)

which reduces to lsolid
cb ~sf Db=(2|31=2ti) for solid fillers, and

to lthin
cb %2sf tDb=(31=2tiD) for thin wall tubes. Note the

similarity of this equation to equation (7).
Since a compact nanotube bundle can be made very long,

owing to the efficient transfer of stress between adjacent
nanotubes, the maximum achievable pullout energy can be
reached (assuming lb5lcb) for a given volume fraction Vf

(equation (19))

Glcb~
Vfsf lcb

12
~

Vfs
2
f Db AtD

24|31=2ti
(49)

This energy is higher by a factor of 1=31=2Db=D compared to
the maximum pullout energy of unbundled uniformly
dispersed nanotubes (equation (21)) with the same volume
fraction and cross-sectional shape, each with a length l5lc. This
factor can be of order 102–103 for a large bundle, and is
reflected in equation (44) and Fig. 17. The reason for this
dramatic advantage in toughness is that the critical length of a
bundle lcb is much longer than that of an individual nanotube
lc, because of the high ratio ab=pb*Db in equation (47).

If the fillers composing the bundle are solid

Gsolid
lcb ~

Vfs
2
f Db

24|31=2ti
(50)

similar to equation (21), and if they are thin-wall with a wall
thickness t

Gthin
lcb %

Vfs
2
f t

6|31=2ti

Db

D
(51)

Under the same comparison assumptions as before
(lb5lcb, l5lc and same Vf), the bundle’s ultimate strength
will be equivalent to uniformly dispersed nanotubes
(equations (27) and (31)). The same is true for the stiffness,
assuming the longitudinal aspect ratio is about the same for
the bundle and a single nanotube (lb=Db%l=D) (equations
(35) and (39)). Moreover, since bundles can be made very
long, it is possible to reach a length lb much higher than lcb,
thus approaching the maximum achievable strength and
stiffness (refer to Fig. 13), a difficult goal to achieve in
unbundled nanotubes.

When the nanotubes in a bundle are loosely packed
(Fig. A1a), the matrix material partially penetrates the
bundle. This phenomenon may occur in practice as a result
of, for example, electrostatic charge that builds up on the
nanotubes during processing or chemical treatment of the
bundle. Consequently, the nanotube–matrix effective inter-
facial area is expanded, and the stress propagation in the
bundle is modified, leading to a reduction in the effective
cross-sectional area that carries the load.

Defining the effective interfacial perimeter npbm and the
effective cross-sectional area nabm, the effective critical
length can be written as in equation (3)

SlcbT~
2sf

ti

SabT
SpbT

~
sfSDbT

2ti
(52)

where nDbm is the effective diameter of a bundle with a circular
cross-section. Correspondingly, the effective pullout energy of
the bundle, SGlcbT~VfsfSlcbT=12. For a given bundle, nDbm
can be assessed by obtaining the bundle’s Sltest

cb T from a

fragmentation test, so that SDbT%2tiSltest
cb T=sf . The effective

diameter SDbT is evidently smaller than Db of a tightly packed
bundle (a rough estimate is SDbT=Db*0:1), and therefore the
maximum achievable effective pullout energy is proportionally
lower, but is still much higher than unbundled uniformly
dispersed nanotubes with the same volume fraction.

While the composite strength and stiffness of tightly packed
bundles were shown to be the same as for uniformly dispersed
nanotubes with the same volume fraction, this is not the case
for loosely packed bundles. The less efficient stress transfer
between the nanotubes in a bundle means that the effective
nanotube volume fraction is lower than Vf, and therefore the
composite strength and stiffness will be degraded to some
extent in comparison to uniformly dispersed nanotubes.

In summary, aligned tightly packed bundles have the
potential of offering a significant improvement in composite
toughness with respect to unbundled nanotubes, while the
strength and stiffness remain unimpaired. Penetration of
matrix material into the bundle may somewhat degrade the
toughness, but it is still expected to remain much higher
than unbundled nanotubes. Since the discussion in this
appendix is generalized for any type of aligned bundle,
these conclusions hold true also for small bundles, formed
by agglomeration during the composite production process.
This means that, from a toughness perspective, aligned
agglomeration is potentially advantageous compared to
uniformly dispersed nanotubes.
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